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Abstract. Configuration space (C-space) has played a central role in
collision-free motion planning, particularly for robot manipulators. While
it is possible to check for collisions at a point using standard algorithms,
to date no practical method exists for computing collision-free C-space
regions with rigorous certificates due to the complexities of mapping
task-space obstacles through the kinematics. In this work, we present the
first to our knowledge method for generating such regions and certificates
through convex optimization. Our method, called C-Iris (C-space Iter-
ative Regional Inflation by Semidefinite programming), generates large,
convex polytopes in a rational parametrization of the configuration space
which are guaranteed to be collision-free. Such regions have been shown
to be useful for both optimization-based and randomized motion plan-
ning. Our regions are generated by alternating between two convex op-
timization problems: (1) a simultaneous search for a maximal-volume
ellipse inscribed in a given polytope and a certificate that the polytope
is collision-free and (2) a maximal expansion of the polytope away from
the ellipse which does not violate the certificate. The volume of the el-
lipse and size of the polytope are allowed to grow over several iterations
while being collision-free by construction. Our method works in arbitrary
dimensions, only makes assumptions about the convexity of the obsta-
cles in the task space, and scales to realistic problems in manipulation.
We demonstrate our algorithm’s ability to fill a non-trivial amount of
collision-free C-space in a 3-DOF example where the C-space can be vi-
sualized, as well as the scalability of our algorithm on a 7-DOF KUKA
iiwa and a 12-DOF bimanual manipulator.

1 Introduction and Related Work

The notion of configuration space (C-space) has become a foundational idea in
robot motion planning since its proposal in the seminal work [1]. In the presence

⋆ equal contribution
This work was supported by Office of Naval Research, Award No. N00014-18-1-2210,
National Science Foundation, Award No. EFMA-1830901., and Air Force Research
Lab Award No. FA8750-19-2-1000



2 Amice, Dai, et al.

Fig. 1: Left: Multiple configurations sampled from one certified C-free region on a 12-
DOF dual KUKA iiwa systems (with wrist joints fixed). Each configuration is visualized
using one color. Right: Our certified C-free region is tight. At one of the sampled
configurations, we draw the separating plane (green) as the non-collision certificate
between the two highlighted polytopic collision geometries (red), with a distance of
7.3mm. Every link of the iiwa is approximated by one or several polytopes.

of obstacles in the Cartesian task space, a fundamental challenge is describing
the collision-free C-space (C-free): the full range of configurations for which a
robot is not in collision. Prior work has sought to describe a C-space obstacle
from its task space description [2][3]. However it is recognized that a complete,
mathematical description of C-space obstacles with high degree of freedom sys-
tems is intractable [4].

Despite this difficulty, describing C-free has been the subject of many works
in robotics. Randomized, collision-free motion planners such as Rapidly Explor-
ing Random Trees (RRT) [5], Probabilistic Road Maps (PRM) [6], and their
variants can be seen as attempting to describe C-free via piecewise linear paths
defined by the nodes and edges of the graph. Works such as [7][8][9] also seek
to provide a description of C-free via randomized sampling. All of these meth-
ods guarantee that the configurations at the sample points are collision-free and
attempt to provide a probabilistic certificate that nearby points contain no col-
lisions. Unfortunately, such methods are inherently limited by the density of the
samples used, which can become a barrier in higher dimensions. This work will
overcome this barrier by providing a deterministic certificate that all of the in-
finitely many configurations in a given subset of C-space are collision-free. This
certificate comes in the form of one parametric separating hyperplane for each
pair of objects which can collide in a given environment such as the one seen in
Fig 1. C-free will then be described as a union of these certified sets. Fig 2 shows
an example of the complexity C-space obstacles for even a simple 3-DOF robot
(the red mesh), as well as an example of several certified, collision-free polytopic
regions produced by our method.
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Describing C-free as a union of sets is not a new idea. In two and three
dimensions and in the presence of polyhedral obstacles, this problem is equivalent
to describing a non-convex polyhedron as a union of convex sets. It is known that
finding a minimal such decomposition is NP-hard [10] to solve exactly and even
APX-hard [11] to approximate3. Works such as [12] and [13] overcome these
hardness results by finding decompositions that are unions of approximately
convex sets.

A method of describing C-free in arbitrary dimensions is given by the Iris
algorithm in [14]. Under the assumption of known, convex obstacles in C-space,
Iris can rapidly grow convex, polytopic regions by alternating between two con-
vex programs. The collision-free certificates of Iris arise naturally due to the
assumption of convexity of the obstacles. Unfortunately, it is often the case that
obstacles are naturally described as convex sets in task space which are rarely
convex in C-space.

Searching for certificates of non-collision in C-space when obstacles are spec-
ified as convex sets in the task space using convex programming (specifically
Sum-Of-Squares (SOS) programming) is the primary technical contribution of
this work. This is achieved by a novel formulation exploiting the well-known
algebraic structure of the kinematics [15][16][17]. Similar to [14], we construct
certified, collision-free polytopic regions by alternating between a pair of con-
vex programs. Our method works in arbitrary dimensions and is the first to our
knowledge to provide such certificates in this setting.

Describing C-free as a union of convex regions is particularly attractive as
such descriptions have proven useful for optimization-based motion planning
such as in [18][19]. Indeed, in our companion paper [20], the authors demonstrate
great success in finding the globally-optimal collision-free trajectory for robot
manipulators by planning through the types of regions generated by our method.

Our certified, convex regions also find natural use in randomized motion
planners. By paying an upfront cost to describe C-free as a union of polytopic
sets, piecewise-linear randomized motion planners can certify that both individ-
ual samples and edges connecting those samples are completely collision-free by
simply checking membership in a finite number of polytopes.

We begin Section 2 by describing how non-collision of a single configuration
can be certified via convex programming. In Section 3, we give essential back-
ground needed to describe the technical approach described in Section 4, where
we extend the key ideas of the problem formulation to handle a range of con-
figurations. Section 4 culminates in Algorithm 1 where we give our algorithm
C-IRIS for growing certified regions. We begin in Section 5 by exploring a simple
3-DOF robot in which we can visualize the configuration space and follow by
demonstrating the ability of our algorithm to certify a wide range of postures
for a realistic 7-DOF robot. We conclude by showing our algorithm’s ability to
scale by exploring a 12-DOF, bimanual manipulator.

3 A problem is said to be APX-hard if no polynomial time algorithm can achieve an
approximation ratio of 1 + δ for some δ > 0 unless P = NP .
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Notation: Throughout the paper, we will use calligraphic letters (S) to denote
sets, Roman capitals (X) to denote matrices and Roman lower case (x) to denote
vectors. We use [N ] = {1, . . . , N} and we will denote the cone of Sums-of-Squares
(SOS) polynomials as Σ. Additionally, we will adopt the notation of [21] for rigid
transforms.

Fig. 2: The 3-DOF robotic system described in Section 5.1. In the right hand
panels we visualize the C-space of this robot. The bright red mesh denotes the
collision constraint of the robot with itself and with the outer box. The free
space is given by the interior of the mesh and is filled by the polytopic regions
certified by Algorithm 1 and grown from the seed points in bright green.

2 Problem Formulation

We assume a known environment in which both the robot and obstacles in
the task space have been decomposed into a union of compact, convex, vertex-
representation (V-rep) polytopes. Such polytopic collision geometries of task
space are readily available through standard tools (e.g. V-HACD).

Our objective is to find large, convex regions of C-free regardless of the di-
mension of the configuration space. This objective is beyond the scope of current
decomposition methods such as V-HACD due to the complexity of the non-linear
kinematics of the robot and the dimensionality of interesting problems

A

B

H
A

B

H

Fig. 3: The convex collision geometries A and B are collision-free if and only if
there exists a separating plane H. The plane acts as a certificate of non-collision.
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We begin by considering the problem of certifying that two collision geome-
tries A and B in task space are non-intersecting for a fixed configuration. Recall
that two convex bodies are non-intersecting if and only if there exists a plane H
separating the two bodies [22]. Moreover, any point in A and B can be written as
a convex combination of the vertices of A and B, respectively. Therefore, a finite
certificate that A and B are not in collision is to find a plane aTx+ b = 0 such
that all the vertices Aj lie on one side of the plane while the vertices Bk lie on
the other side as in Fig 3. Adopting the convention established in [21], we denote
the position of vertex Aj in a given frame F as F pAj . The non-collision condition
is certified by the existence of a separating plane satisfying the following linear
constraints on parameters a, b [23]:

aT
(
F pAj

)
+ b ≥ 1 ∀ j

aT
(
F pBk

)
+ b ≤ −1 ∀ k.

(1)

This hyperplane proves that all the points in body A are separated from B by a
distance of at least 2

∥a∥ . We emphasize that for each pair of collision geometries

we need to search for a separating plane for that pair.
While such a formulation provides a certificate for a single configuration, it

is not sufficient for an entire set of possible configurations, as different config-
urations might require different separating planes as seen in Fig 3. Therefore,
we will search for a family of separating planes where a(q), b(q) are parame-
terized functions of the robot configuration q. We search for these parameters
through optimization such that the separating plane condition (1) holds for any
configuration within a certain C-space region P, namely

∀q ∈ P =⇒

{
a(q)T

(
F pAj (q)

)
+ b(q) ≥ 1 ∀ j

a(q)T
(
F pBk(q)

)
+ b(q) ≤ −1 ∀ k

, (2)

where =⇒ means the condition on the left implies the condition on the right.
The right hand side of (2) are non-negativity conditions

(
aT

)
F pAj +b−1 ≥ 0

and −1−
(
aT

)
F pBk −b ≥ 0. It is generally challenging if not intractable to verify

a non-negativity condition for the infinitely many element in a set (∀q ∈ P on the
left hand side of (2)). But when the non-negativity condition and the set have
certain structures, then the verification can become tractable. As we will see in
Section 3, when both the set P and the non-negativity conditions on both side of
=⇒ are specified by polynomials, we can solve a convex optimization program
(specifically a Sum-of-Squares program) to verify the condition. In Section 4 we
will convert (2) to polynomial functions so as to verify the non-collision condition
with the Sum-of-Squares technique.

3 Background

As hinted in Section 2 and as we shall show in Section 4, the problem of certifying
a C-free region can be posed as a polynomial implication problem of the form

∀x ∈ Sg = {x : gi(x) ≥ 0, i ∈ [n]} =⇒ p(x) ≥ 0, (3)
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where gi(x), p(x) are all polynomials of x. While checking the positivity of a
polynomial is in general NP-hard [24], a sufficient condition is to check whether
p(x) can be expressed as a sum of squares p(x) =

∑
i f

2
i (x), with fi(x) also being

polynomials. Such a check can be performed using semidefinite programming
(SDP) [24][25] and is known as Sums-of-Squares (SOS) programming. The SOS
technique has been widely used in robotics, for example in stability verification
[26][27][28], reachability analysis [29][30] and geometric modelling [31].

Moreover, polynomial implications of the type in (3) are well studied in al-
gebraic geometry [25] and indeed algebraic certificates of the implication can
be searched for using SOS programming [24]. Theorems concerning these im-
plications are typically called Positivstellensatz (Psatz) theorems [32]. One of
the strongest theorems concerning implications of the form in (3) is known as
Putinar’s Positivstellensatz:

Theorem 1 (Putinar’s Positivstellensatz [33]). Suppose Sg is Archimedean.
Then p(x) > 0 for all x ∈ Sg if and only if there exists λi(x) SOS such that:

p(x) = λ0(x) +
∑
i

λi(x)gi(x). (C2)

The polynomials λi(x) for i ≥ 0 are referred to as multiplier polynomials.

where Archimedean is a property slightly stronger than compactness. It is defined
in Appendix A.

In order to apply the SOS technique and Theorem 1 to our non-collision
condition (2), we need to convert the point positions F pAj , F pBk to polynomial
functions. While the point positions are typically written as trigonometric func-
tions of q using sin and cos, we will build upon a strong history in robotics of
algebraic kinematics, e.g. [17][34], to write the kinematics function using poly-
nomials in Section 4.1.

4 Technical Approach

Given an initial, collision-free posture specified as joint angles in the configura-
tion space, our algorithm searches for two key objects: a C-free region P and a
certificate CP that P contains only collision-free postures. In Section 4.1 we will
introduce a rational parameterization of the robot configuration. This param-
eterization enables us to write the non-collision condition (2) as a polynomial
implication problem, certifiable through solving a Sum-of-Squares program (Sec-
tion 4.2). In Section 4.3, we build on the program from Section 4.2 to enable the
search for regions increasing in size. This is outlined in Algorithm 1.

4.1 Rational Parametrization of the Forward Kinematics

In order to write the non-collision condition (2) as a polynomial implication
problem (3), we need to convert both sides of =⇒ in (2) to polynomials. To this
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end, we will utilize a rational reparameterization of robot configurations, such
that the position of a point on the robot, computed through forward kinematics,
is converted to a rational function (with both the numerator and the denominator
as polynomials of this reparameterization). This enables us to use Theorem 1 to
verify the non-collision condition in Section 4.2 using SOS.

We consider a robot manipulator with N revolute joints4. The position of a
point A expressed in the reference frame F as a function of the joint angles q
generically assumes the form of the trigonometric polynomial

F pAw(q) =
∑
j

cjw
∏

i∈SF,A

(cosnij (qi) sin
mij (qi)) , w ∈ {x, y, z}, (4)

where SF,A ⊆ [N ] is the set of joints lying on the kinematic chain between F
and A, mij + nij ≤ 1, and both mij and nij ∈ {0, 1} for all i, j [36]. Namely, for
each qi, at most one of cos(qi) or sin(qi) can appear in

∏
(cosnij (qi) sin

mij (qi);
hence cos(q1) sin(q2) cos(q3) and sin(q1) cos(q3) are allowed, but cos(q1) sin(q1)
or cos2(q1) are not. cjx, cjy, cjz are given constants computed from the D-H
parameters of the kinematics chain. We choose to be explicit about the reference
frame F at the risk of being pedantic, as the choice of reference frame F will have
important consequences for the scalability of the approach described in Section
4.2 (see Appendix B.1 for a detailed discussion).

The function in (4) is known as a multi-linear trigonometric polynomial.
It has many fortunate algebraic properties which we will exploit in subsequent
sections. One particular property that we shall use is a change of variables known
as the stereographic projection [37]:

si = tan
(qi
2

)
→

cos(qi) =
1−s2i
1+s2i

sin(qi) =
2si
1+s2i

. (5)

We will refer to the space defined by the variable q as the configuration space
and the space defined by the variable s as the tangent-configuration space.

In this new variable s, the forward kinematics are given by the following
rational function, where both the numerator and denominator are polynomial
functions of s,

F pAw(s) =
∑
j

cjw
∏

i∈SF,A

(
(1− s2i )

nij (2si)
mij

(1 + s2i )
nij+mij

)
, w ∈ {x, y, z}. (6)

This parametrization and the theorems in Section 3 will be leveraged in Section
4.2 to transform the certification problem (2) into a SOS program.

Our objective will be to find large, polytopic regions P = {s | Cs ≤ d} in
the variables s = tan(q/2). We will assume that the joints of the robot cannot
undergo complete rotation and are constrained to angles

−π < ql ≤ q ≤ qu < π. (7)

4 Our approach can be extened to robots with algebraic joints, including revolute,
prismatic, cylindrical, plane and spherical joints [35].
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This ensures that the mapping between the configuration and tangent-configuration
spaces is bijective and so trajectories in the tangent-configuration space corre-
spond unambiguously to trajectories in the original configuration space. More-
over, it allows us to restrict the polytope P ⊆ Plim = {s | sl ≤ s ≤ su} = {s |
Clims ≤ dlim} the polytope encoding the joint limits. This ensures that P is a
compact polytope and hence we can invoke both directions of Theorem 1 due to
[38, Corrollary 6.3.5].

4.2 The SOS Certification Problem

We certify the non-collision condition (2) through solving a SOS program which
we describe in this section. The key idea is to generalize (1) and search for a poly-
nomial family of separating planes parametrized by the tangent-configuration
space variable s which separate two collision geometries A and B for all s in a
given polyhedron P. These separating planes serve as a certificate that A and B
are not in collision for any configurations in P. By simultaneously searching for
a plane for each collision pair (A,B) in the environment, we are able to certify
that no collision occurs between any two bodies for all s ∈ P.

To begin, we denote the task-space-polytope vertex position from (6) as a
vector of rational functions

F pAj (s) =
F fAj (s)
F gAj (s)

.

Notice that F gA(s) =
∏

i∈SF,A
(1+s2i )

nij+mij is a product of positive polyno-
mials and therefore positive for all s. Moreover, this denominator is common for
all x/y/z entries of F pA(s). By plugging F pA(s) into the constraints of (1) and
multiplying the denominator through, we are able to write a pair of polynomial
inequalities analogous to the constraints in (1)

find
∀ pairs(A,B)

aA,B(s), bA,B(s) subject to (8a)

aTA,B(s)
(
F fAj (s)

)
+ (bA,B(s)− 1)

(
F gAj (s)

)
︸ ︷︷ ︸

αF,Aj (aA,B,bA,B,s)

≥ 0 ∀ j, s ∈ P (8b)

−aTA,B(s)
(
F fBk(s)

)
− (bA,B(s) + 1)

(
F gBk(s)

)︸ ︷︷ ︸
βF,Bk (aA,B,bA,B,s)

≥ 0 ∀ k, s ∈ P, (8c)

where we denote the polynomials on the left hand side of (8b)(8c) as αF,Aj (aA,B, bA,B, s)
and βF,Bk(aA,B, bA,B, s) for convenience. aA,B(s), bA,B(s) are also polynomials of
s. The αF,Aj (aA,B, bA,B, s) and βF,Bk(aA,B, bA,B, s) are linear in the coefficients
of the polynomials aA,B and bA,B which are the decision variables in the problem.
The variables s are known as the indeterminates of the polynomial.

At this point, we recognize that the non-collision condition (2) can be written
as the following polynomial implication:

s ∈ P = {s | Cs ≤ d} =⇒ (8b) and (8c).
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Using Theorem 1 and [38, Corrollary 6.3.5], a necessary and sufficient condi-

tion for this implication to hold is the existence of polynomials λ
Aj ,B
i (s), νA,Bk

i (s) ∈
Σ (where Σ is the set of SOS polynomials) such that

αF,Aj (aA,B, bA,B, s) = λ
Aj ,B
0 (s) +

m∑
i=1

λ
Aj ,B
i (s)(di − cTi s) (9a)

βF,Bk(aA,B, bA,B, s) = νA,Bk

0 (s) +

m∑
i=1

νA,Bk

i (s)(di − cTi s), (9b)

where ci, di are the i-th row of C, d. The equality between the polynomials in
(9a)(9b) means that the coefficients of the corresponding terms are equal, which
adds linear equality constraints on the decision variables aA,B, bA,B, λ

Aj ,B, µA,Bk .
Therefore, a polytopic region in the tangent-configuration space P = {s |

Cs ≤ d} is collision-free if and only if the program

find
∀ pairs(A,B)

aA,B(s), bA,B(s), λ(s), ν(s) subject to

αF,Aj (aA,B, bA,B, s) = λ
Aj ,B
0 (s) +

m∑
i=1

λ
Aj ,B
i (s)(di − cTi s)

βF,Bk(aA,B, bA,B, s) = νA,Bk

0 (s) +

m∑
i=1

νA,Bk

i (s)(di − cTi s)

λ(s), ν(s) ∈ Σ

(10)

is feasible, where λ(s) and ν(s) collect all the multipliers λ
Aj ,B
i and νA,Bk

i .
This is a SOS program which searches for the coefficients of the polynomials
aA,B(s), bA,B(s), λ(s), and ν(s). We call a feasible solution

CP =
⋃
A,B

{aA,B(s), bA,B(s), λ(s), ν(s)}

to (10) a collision-free certificate of P.

Remark 1. If P is collision-free, then it can always be certified as such by (10)
provided the degree of α and β are sufficiently large. We discuss practical con-
siderations of basis selection for (10) in Appendix B.2

4.3 Growing Polytopic Regions in Tangent-Configuration Space

Describing C-free using a few large regions rather than many smaller ones is
advantageous in almost all circumstances. In this section, we show how to extend
the SOS feasibility program in (10) to enable not only certification, but certified
growth of polytopic C-free regions.

We begin by discussing how we will measure the size of our polytope P =
{s | Cs ≤ d}. While it may be attractive to measure the size of a polytope by its
volume, it is known that computing the volume of a half-space representation
(H-Rep) polytope is #P-hard5 [40] and therefore intractable as an objective. A

5 #P-hard problems are at least as hard as NP-complete problems [39]
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useful surrogate for the volume of P used in [14] is the volume of the maximal
inscribed ellipse of P, the set EP = {Qu + s0 | ∥u∥2 ≤ 1} where Q describes
the shape of the ellipsoid and s0 its center. The problem of finding the maximal
inscribed ellipsoid in a given polytope is a semidefinite program described in [22,
Section 8.4.2].

Additionally, in order to cover diverse areas of C-free, we grow each polytope
P around some nominal posture ss we call the seed point. New seed points are
typically chosen using rejection sampling to obtain a point outside of the existing
certified regions and P is required to contain ss as it grows.

Combining the objective, the constraints of the maximal inscribed ellipsoid
program, and the seed point condition with the program in (10) yields the opti-
mization program:

max
Q,s0,C,d,λ,ν,aA,B,bA,B

logdetQ subject to (11a)

∥Qci∥2 ≤ di − cTi s0 ∀ i ∈ [m] (11b)

Css ≤ d (11c)

∥ci∥2 ≤ 1 ∀ i ∈ [m] (11d)

αF,Aj (aA,B, bA,B, s) = λ
Aj ,B
0 (s) +

m∑
i=1

λ
Aj ,B
i (s)(di − cTi s) ∀ pairs (A,B) (11e)

βF,Bk(aA,B, bA,B, s) = νA,Bk

0 (s) +

m∑
i=1

νA,Bk

i (s)(di − cTi s) ∀ pairs (A,B) (11f)

Q ⪰ 0, λ(s), ν(s) ∈ Σ. (11g)

The condition EP ⊂ P is given by the constraint (11b). (11c) enforces that P
grows around ss. (11e) and (11f) are the polynomial implication condition (8b)
(8c): s ∈ P = {s | Cs ≤ d} =⇒ α ≥ 0 and β ≥ 0, proving the existence
of the separating planes between the robot and the obstacles in the task space.
The added constraint (11d) prevents numerically undesirable scaling of our poly-
tope. While this program is attractive as a specification, it is not convex due to
the bilinearity terms Qci in (11b) and λidi, λic

T
i in (11e)(11f). This bilinearity

precludes simultaneous search of P, EP and the corresponding certificate.
However, the program is convex when either the polytope P is fixed or when

the inscribed ellipse EP and the multiplier polynomials (save for λ0 and ν0)
are fixed. In the former case, given a polytope such that (11) is feasible, we
simultaneously obtain a collision-free certificate CP , maximal inscribed ellipsoid
EP , and an accompanying estimate of the size of P. In this situation, clearly (11d)
becomes redundant. We remark that (11) is only marginally more complex than
(10) as it introduces only one additional semidefinite decision variable Q and
one vector decision variable s0 with m constraints which are not coupled to the
multiplier polynomials.

Conversely, from a solution of (11) we are also capable of searching for a
new collision-free polytope with an accompanying certificate. To ensure growth
of the polytopic region, our objective is to push the faces of the current polytope
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δ1 δ6

δ5

δ4
δ3

δ2

Fig. 4: In (12) we search for the maximum amount the polytopes faces can be
pushed away from the current inscribed ellipse without violating the certificate
found in the previous step.

away from the inscribed ellipsoid without violating our certificate as in Fig 4.
To accomplish this, we present the following minor modification of (11)

max
C,d,δ,λ0,ν0,aA,B,bA,B

m∏
i=1

(δi + ε0) subject to

∥Qci∥2 ≤ di − δi − cTi s0, δi ≥ 0 ∀ i ∈ [m]

(11c), (11d), (11e), (11f)

λ0(s), ν0(s) ∈ Σ

(12)

where ε0 > 0 is some positive constant ensuring that the objective is never 0.
We emphasize that we have fixed the multipliers λi and νi for i > 0 and instead
search for di and ci.

In this program, we introduce the variable δi which measures the distance
between the hyperplane cTi s = di and the inscribed ellipse. Searching over the
variable C allows the normal of the polytope to rotate in order to accomplish a
greater change in margin. The remaining constraints enforce that the polytope
continue to contain the ellipse EP while also generating a new set of separating
planes within the collision-free certificate CP . The alternation procedure is out-
lined in Algorithm 1 and can be seen as a generalization of the Iris algorithm
from [14]. Notice that the volume of the inscribed ellipsoid EP is guaranteed to
increase in each iteration of Algorithm 1.

Remark 2. To make Algorithm 1 numerically tractable, in Appendix B, we dis-
cuss practical aspects to scale the algorithm to realistic examples.

5 Results

In this section, we demonstrate the use of Algorithm 1 on three representative
examples. In the first example, we consider a 3-DOF system for which we can
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Algorithm 1: Given an initial polytopic region P0 for which (11) is
feasible, return a new polytopic region Pi with a maximal inscribed
ellipse EPi

with larger volume than EP0
and a collision-free certificate

CPi
. Notice that since P0 is assumed collision-free, programs (11) and

(12) are always feasible. (11) and (12) are alternated until the change
in the volume of the ellipse EP is less than some tolerance.

1 i← 0
2 do
3 (EPi , CPi)← Solution of (11) with data (Pi)
4 (Pi+1, CPi+1)← Solution of (12) with data (EPi , CPi)
5 i← i+ 1

6 while
(
vol(EPi)− vol(EPi−1)

)
/vol(EPi−1) ≥ tolerance;

7 return (Pi, CPi)

visualize the entire configuration space. This enables us to plot the resulting
regions of our algorithm. Next, we analyze the typical run times on the 7-DOF
KUKA iiwa. Finally, we demonstrate the scalability of our algorithm on a 12-
DOF system composed of two KUKA iiwas (with the wrist joint fixed as the
wrist link is symmetric about the joint axis). All convex programs are solved
using Mosek v9.2 [41] running on Ubuntu 20.04 with an Intel 11th generation i9
processor. Code is publicly available on Github6.

5.1 3-DOF Flipper System

In this example, we consider the 3-DOF system in the left-most panel of Fig
2 consisting of two iiwas with all joints save those at the ends of the orange
links fused. This system has few degrees of freedom, but maintains rich, realistic
collision geometries. As the C-space is three-dimensional, we are able to visualize
the collision constraint by using marching cubes [42]. This is plotted as the red
mesh in the right two panels of Fig 2.

We run Algorithm 1 on 11 different regions initialized according to Algorithm
2 described in Appendix B.4. Our approach is able to grow regions whose union
describes 90% of C-free. In Fig 2, we visualize a subset of these 11 regions
demonstrating that each region covers a substantial amount of the C-free on
their own. In step 3 of Algorithm 1, the largest SOS takes 0.008s to solve, and
in step 4 of Algorithm 1, the SOS takes 0.647s to solve.

In Fig 5, we demonstrate the certification of a single, particularly large region.
The green and teal plane certify that the end-effector of the left arm (highlighted
in blue) does not collide with the middle link (highlighted in purple) and the top
link (highlighted in red) respectively for all configurations in the purple region
shown in right hand panes of 5.

6 https://github.com/AlexandreAmice/drake/tree/C_Iris

https://github.com/AlexandreAmice/drake/tree/C_Iris
https://github.com/AlexandreAmice/drake/tree/C_Iris
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Fig. 5: Algorithm 1 generates a set of separating planes between each collision body
that vary as the configuration moves (denoted by the blue sphere in the right most
pane). As the configuration varies in the purple C-free region, the separating planes in
green and teal can move to accommodate the relative shifts in the robot positions.

5.2 7-DOF KUKA with Shelf

We apply our approach to a 7-DOF KUKA iiwa arm to certify and search for
C-free regions with a shelf, as shown in Fig 6. We also show the growth of volume
for one certified C-free region in Fig 7. The volume increases by a factor of 10,000
in 11 iterations of Algorithm 1, and covers a range of configurations (Fig 7 left).
In step 3 of Algorithm 1, the largest SOS take 54s to solve, and in step 4 of
Algorithm 1, the SOS takes 8s to solve.

Fig. 6: 7-DOF iiwa example. We highlight one pair of collision geometries (blue on
robot gripper and red on the shelf), together with their separating plane (green).

5.3 12-DOF Bimanual Example

Finally we demonstrate the scalability of our approach on a 12-DOF system of
two KUKA iiwa arms (with fixed wrist joint) to find C-free regions avoiding self-
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Fig. 7: Left: multiple sampled postures (in different colors) in a certified C-free
region. Right: The growth of volume with Algorithm 1 in each iteration.

collision. In Fig 1, we visualize several postures in one certified C-free region.
At one sampled posture, the closest distance between the collision geometries
is 7.3mm (See Fig 1 right), indicating our certified C-free region is extremely
tight. 12-DOF is quite high-dimensional for any sampling-based algorithm, and
the solution times for generating our strong deterministic certificate increases
significantly, too, compared to the single arm case. Solving the largest SOS
program in line 3 of Algorithm 1 takes 105 minutes, and the SOS program in
line 4 of Algorithm 1 take 4 minutes.

6 Conclusion and Future Work

In this work, we present an approach to find large certifiable C-free regions for
robot manipulators. Our approach certifies a polytopic region in the tangent-
configuration space to be collision-free through convex optimization. Moreover,
we give a practical, iterative algorithm for finding and growing these C-free
regions. Our method works in arbitrary dimensions and scales to reasonable,
realistic examples in robotic manipulation. Such certified regions find practical
use in both randomized and optimization-based collision-free motion planning
algorithms.

While this paper assumed a system composed of only revolute joints and col-
lision bodies defined as V-rep polytopes, we believe that the essential machinery
can be applied to arbitrary algebraic joints and convex bodies. We intend to
investigate such extensions in future work. Additionally, in Appendix C we have
also given a non-linear optimization algorithm for very rapidly proposing re-
gions when the cost of many alternations becomes prohibitive. Future work will
explore a tighter integration of Algorithms 1 and 2.
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A Definition of Archimedean

In this section we formally define the Archimedean property that appears in
Theorem 1.

Definition 1. A semialgebraic set Sg = {x | gi(x) ≥ 0, i ∈ [n]} is Archimedean
if there exists N ∈ N and λi(x) ∈ Σ such that:

N −
n∑

i=1

x2
i = λ0(x) +

n∑
i=1

λi(x)gi(x)

B Practical Aspects

In this section we discuss important ways to scale Algorithm 1. In sections B.1
and B.2 we describe design choices which dramatically reduce the size of the SOS
programs used in the alternations. Next, we discuss aspects of Algorithm 1 which
can be parallelized, reducing solve time in the alternations. Finally, we describe
an extension to the original Iris algorithm [1] which can be used to rapidly
propose a very large region that is likely, but not certified, to be collision-free.
Seeding Algorithm 1 with such a region can dramatically reduce the number of
iterations required to obtain a satisfyingly large volume.

B.1 Choosing the Reference Frame

The polynomial implications upon which the programs (11) and (12) are based
require choosing a coordinate frame between each collision pair A and B. How-
ever, as the collision-free certificate between two different collision pairs can be
computed independently of each other, we are free to choose a different coordi-
nate frame to express the kinematics for each collision pair. This is important in
light of (4) and (5) that indicate that the degree of the polynomials F fAj and
F gAj are equal to two times the number of joints lying on the kinematic chain
between frame F and the frame for A. For example, the tangent-configuration
space polynomial in the variable s describing the position of the end-effector
of a 7-DOF robot is of total degree 14 when written in the coordinate frame
of the robot base. However, when written in the frame of the third link, the
polynomial describing the position of the end effector is only of total degree
(7 − 3) × 2 = 8. This observation is also used in [2] to reduce the size of the
optimization program.

The size of the semidefinite variables in (11) and (12) scale as the square of
the degree of the polynomial used to express the forward kinematics. Supposing
there are n links in the kinematics chain between A and B, then choosing the jth
link along the kinematics chain as the reference frame F leads to scaling of order
j2+(n− j)2. Choosing the reference frame in the middle of the chain minimizes

this complexity to scaling of order n2

2 and we therefore adopt this convention in
our experiments.
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B.2 Basis Selection

The condition that a polynomial can be written as a sum of squares can be
equivalently formulated as an equality constraint between the coefficients of the
polynomial and an associated semidefinite variable known as the Gram matrix
[3]. In general, a polynomial in k variables of total degree 2d has

(
k+2d
2d

)
coeffi-

cients and requires a Gram matrix of size
(
k+d
d

)
to represent which can quickly

become prohibitively large. Fortunately, the polynomials in our programs con-
tain substantially more structure which will allow us to drastically reduce the
size of the Gram matrices.

We begin by noting from (6) that while both the numerator and denominator
of the forward kinematics are of total degree 2n, with n the number of links of
the kinematics chain between frame A and F , both polynomials are of coordinate
degree of at most two (i.e. the highest degree of si in any term is s2i ). We will
refer to this basis as µ(s) which is a vector containing terms of the form

∏n
i=1 s

di
i

with di ∈ {0, 1, 2} for all n3 possible permutations of the exponents di.
Next, we recall the form of αF,Aj (aA,B, bA,B, s) from (8b) and (8c). If aA,B(s) =

aTA,Bη(s) and bA,B(s) = bTA,Bη(s) for some basis η in the variable s, then αF,Aj

and βF,Aj can be expressed as linear functions of the basis γ(s) = vect(η(s)µ(s)T )
where we use vect to indicate the flattening of the matrix outer product. Con-
cretely, if we choose to make aA,B(s) and bA,B(s) linear functions of the indeter-
minates s, then η(s) = l(s) =

[
1 s1 . . . sn

]
. Therefore αF,Aj and βF,Aj can be

expressed as linear functions of the basis

γ(s) =
[
µ(s) s1µ(s) . . . snµ(s)

]
(13)

After choosing the basis η(s), which determines the basis γ(s), the equality
constraints (9a) and (9b) constrain the necessary basis needed to express the
multiplier polynomials λ(s) and ν(s). The minimal such basis is related to an
object known in computational algebra as the Newton polytope of a polyno-
mial New(f) [4]. The exact condition is that the New(η(s)) + New(µ(s)) ⊆
New(ρ(s)) +New(l(s)) where the sum in this case is the Minkowski sum.

If we choose η(s) as the linear basis l(s), then we obtain the condition that
New(ρ(s)) = New(µ(s)) and since µ(s) is a dense, even degree basis then we
must take ρ(s) = µ(s). Choosing η(s) as the constant basis would in fact result
in the same condition, and therefore searching for separating planes which are
linear functions of the tangent-configuration space does not increase the size of
the semidefinite variables. As the complexity of (11) and (12) is dominated by the
size of these semidefinite variables, separating planes which are linear functions
changes does not substantially affect the solve time but can dramatically increase
the size of the regions which we can certify.

Remark 3. In the case of certifying that the end-effector of a 7-DOF robot will
not collide with the base using linearly parametrized hyperplanes, choosing to
express conditions (9a) and (9b) in the world frame with näıvely chosen bases
would result in semidefinite variables of size

(
7+7
7

)
= 3432. Choosing to express

the conditions according to the discussion in Section B.1 and choosing the basis
γ(s) from (13) results in semidefinite matrices of rows at most 24 = 16.
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B.3 Parallelization

While it is attractive from a theoretical standpoint to write (11) as a single, large
program it is worth noting that can in fact be viewed as K + 1 individual SOS
and SDP programs, where K is the number of collision pairs in the environment.
Indeed, certifying whether pairs (A1,A2) are collision-free for all s in the poly-
tope P can be done completely independently of the certification of another pair
(A1,A3) as neither the constraints nor the cost couple the conditions of imposed
on any pairs. Similarly, the search for the largest inscribed ellipsoid can be done
independently of the search for the separating hyperplanes.

Solving the certification problem embedded in (11) as K individual SOS
programs has several advantages. First, as written (11) has 2(m + 1)K

∑
i |Ai|

semidefinite variables of various sizes. In the example from Section 5.1 this corre-
sponds to 35,072 semidefinite variables. This can be prohibitively large to store
in memory as a single program. Additionally, solving the problems independently
enables us to determine which collision bodies cannot be certified as collision-free
and allows us to terminate our search as soon as a single pair cannot be certi-
fied. Finally, decomposing the problems into subproblems enables us to increase
computation speed by leveraging parallel processing.

We note that (12) cannot be similarly decomposed as on this step the vari-
ables cTi and d affect all of the constraints. However, this program is substantially
smaller as we have fixed 2mK

∑
i |Ai| semidefinite variables as constants and re-

placed them with 2m linear variables representing the polytope. This program
is much more amenable to being solved as a single program.

B.4 Seeding the Algorithm

It is worth noting that the alternations in Algorithm 1 must be initialized with
a polytope P0 for which (11) is feasible. In principle, the alternation proposed in
Section 4.3 can be seeded with an arbitrarily small polytope around a collision-
free seed point. This seed polytope is then allowed to grow using Algorithm 1.
However, this may require running several dozens of iterations of Algorithm 1 for
each seed point which can become prohibitive as the size of the problem grows.
It is therefore advantageous to seed with as large a region as can be initially
certified.

Here we discuss an extension of the Iris algorithm in [1] which uses nonlinear
optimization to rapidly generate large regions in C-space. These regions are
not guaranteed to be collision-free and therefore they must still be passed to
Algorithm 1 to be certified, but do provide good initial guesses. In this section,
we will assume that the reader is familiar with Iris and will only discuss the
modification required to use it to grow C-space regions. Detailed pseudocode is
available in Appendix C

Iris grows regions in a given space by alternating between two subproblems:
SeparatingHyperplanes and InscribedEllipsoid. The InscribedEllip-
soid is exactly the program described in [5, Section 8.4.2] and we do not need
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to modify it. The subproblem SeparatingHyperplanes finds a set of hyper-
planes which separate the ellipse generated by InscribedEllipsoid from all of
the obstacles. This subproblem is solved by calling two subroutines Closest-
PointOnObstacle and TangentPlane. The former finds the closest point
on a given obstacle to the ellipse, while the latter places a plane at the point
found in ClosestPointOnObstacle that is tangent to the ellipsoid.

The original work in [1] assumes convex obstacles which enables Closest-
PointOnObstacle to be solved as a convex program and for the output of
TangentPlane to be globally separating plane between the obstacle and the
ellipsoid of the previous step. Due to the non-convexity of the C-space obsta-
cles in our problem formulation, finding the closest point on an obstacle exactly
becomes a computationally difficult problem to solve exactly [6]. Additionally,
placing a tangent plane at the nearest point will be only a locally separating
plane, not a globally separating one.

To address the former difficulty, we formulate ClosestPointOnObstacle
as a nonlinear program. Let the current ellipse be given as E = {Qu + s0 |
∥u∥2 ≤ 1} and suppose we have the constraint that s ∈ P = {s | Cs ≤ d}. Let
A and B be two collision pairs and ApA,

BpB be some point in bodies A and B
expressed in some frame attached to A and B. Also, let WXA(s) and WXB(s)
denote the rigid transforms from the reference frames A and B to the world
frame respectively. We remind the reader that this notation is drawn from [7].
The closest point on the obstacle subject to being contained in P can be found
by solving the program

min
s,ApA,BpB

(s− s0)
TQTQ(s− s0) subject to (14a)

WXA(s)ApA = WXB(s)BpB (14b)

Cs ≤ d (14c)

This program searches for the nearest configuration in the metric of the ellipse
such that two points in the collision pair come into contact. We find a locally
optimal solution (s⋆,Ap⋆A,

Bp⋆B) to the program using a fast, general-purpose
nonlinear solver such as SNOPT [8]. The tangent plane to the ellipse E at
the point s⋆ is computed by calling TangentPlane then appended to the
inequalities of P to form P ′. This routine is looped until (14) is infeasible at
which point InscribedEllipse is called again.

Once a region P = {s | Cs ≤ d} is found by Algorithm 2, it will typically
contain some minor violations of the non-collision constraint. To find an initial,
feasible polytope P0 to use in Algorithm 1, we search for a minimal uniform
contraction δ of P such that Pδ = {s | Cs ≤ d − δ ∗ 1} is collision-free. This
can be found by bisecting over the variable δ ∈ [0, δmax] and solving repeated
instances of (11).

Seeding Algorithm 1 with a P0 as above can dramatically reduce the number
of alternations required to obtain a fairly large region and is frequently faster
than seeding Algorithm 1 with an arbitrarily small polytope.
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C Supplementary Algorithms

We present a pseudocode for the algorithm presented in Appendix B.4. A mature
implementation of this algorithm can be found in Drake7.

Algorithm 2: Given an initial tangent-configuration space point s0
and a list of obstacles O, return a polytopic region P = {s | Cs ≤ d}
and inscribed ellipsoid EP = {s | Qu+ sc} which contains a substantial
portion of the free C-space (but is not guaranteed to contain no colli-
sions)

1 (C, d)← plant joint limits
2 Pi ← {s | Cs ≤ d}
3 EP0 ← InscribedEllipsoid(P0)
4 j ← number of rows of C
5 do
6 do
7 (s⋆,Ap⋆A, Bp⋆B)← FindClosestCollision(Pi, EPi)

8 (cTj+1, dj+1)← TangentHyperplane(s⋆, EPi)

9 C ← hstack(C, cTj+1)
10 d← hstack(d, dj+1)
11 Pi ← {s | Cs ≤ d}
12 j ← j + 1

13 while FindClosestCollision(Pi, EPi) is feasible;
14 EPi ← InscribedEllipsoid(Pi) i← i+ 1

15 while (vol(Ei)− vol(Ei−1)) /vol(Ei−1) ≥ tolerance;
16 return (Pi, EPi)
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