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Approximately Supermodular Scheduling
Subject to Matroid Constraints

Luiz F. O. Chamon, Alexandre Amice, and Alejandro Ribeiro

Abstract—Control scheduling refers to the problem of as-
signing agents or actuators to act upon a dynamical system
at specific times so as to minimize a quadratic control cost,
such as the objective of the Linear-quadratic-Gaussian (LQG)
or the Linear Quadratic Regulator (LQR). When budget or
operational constraints are imposed on the schedule, this problem
is in general NP-hard and its solution can therefore only be
approximated even for moderately large systems. The quality
of this approximation depends on the structure of both the
constraints and the objective. This work shows that greedy
scheduling is near-optimal when the constraints can be repre-
sented as an intersection of matroids, algebraic structures that
encode requirements such as limits on the number of agents
deployed per time slot, total number of actuator uses, and duty
cycle restrictions. To do so, it proves that the LQG cost function
is α-supermodular and provides a new α/(α + P )-optimality
certificates for the greedy minimization of such functions over
an intersections of P matroids. These certificates are shown to
approach the 1/(1 + P ) guarantee of supermodular functions
in relevant settings. These results support the use of greedy
algorithms in non-supermodular quadratic control problems as
opposed to typical heuristics such as convex relaxations and
surrogate figures of merit, e.g., the log det of the controllability
Gramian.

I. INTRODUCTION

As the number and complexity of interconnected devices
grows, fully observing and/or actuating these dynamical sys-
tems becomes infeasible. Choosing when and where to sense
and act then becomes a fundamental problem with significant
impact on the system performance. Many of these problems
can be cast as discrete optimization problems in which a subset
of available elements (sensors, tasks, or actuators) is chosen
to optimize a control objective, e.g., quadratic estimation or
control figures of merit [2]–[5]. The difficulty in solving these
problems arises from the constraints imposed to meet cost,
power, and/or communication requirements. For instance, we
may only afford to use a few actuators per control cycle or
agents may only be able to perform specific tasks at specific
times. This leads to problems that are NP-hard to solve in
general and whose solutions must therefore be approximated
for anything beyond small-scale systems [6]–[12]. The choice
of approximation method and its performance heavily depends
on properties of the underlying problem.

In this work, we tackle the control scheduling problem
in which agents or actuators are assigned to act at specific
time instants so as to minimize a quadratic control cost. A
common approach in this context is using a convex relaxation,
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typically including a sparsity promoting regularization [13]–
[16]. Though practical, these methods lack approximation
guarantees and may therefore result in solutions with poor
performance. What is more, solving large-scale optimization
problems can be challenging even when they are convex, es-
pecially when semidefinite relaxations are employed. Another
avenue is to build the schedule using discrete optimization
methods, such as tree pruning [17] or greedy search [18]–
[20]. The latter solution is particularly attractive in practice
due to its low complexity and iterative nature: actuators or
agents are matched to time instants one at a time by selecting
the feasible match that most reduces the objective.

Besides the computational aspect, greedy solutions also
enjoy near-optimal guarantees. Two conditions are often used
to derive these certificates. The first is the supermodularity
of the objective, a diminishing return property displayed by
set functions such as the log determinant or the rank of
the controllability Gramian. The second, is that the problem
requirements can be mapped into a combinatorial structure
known as a matroid [21, Ch. 39]. These include, for instance,
constraints on the maximum number of actuators/agents se-
lected per time instant. Under these assumptions, greedy
scheduling yields 1/2-optimal solutions [22]. Other methods
based on continuous extensions can be leveraged to improve
this factor to 1− 1/e [23].

In practice, however, both of these assumptions can be
quite stringent. First, many cost functions used in control
applications are not supermodular. In particular, this is the
case of the quadratic control objectives commonly deployed
in optimal control, e.g., for linear-quadratic-Gaussian (LQG)
and linear quadratic (LQR) regulators [10], [12], that are
supermodular only under stringent conditions [19]. Second,
real-world applications typically have requirements too general
to be mapped onto a matroid. For instance, there are often
restrictions on both the number of actuators per time instant
and the number of use per actuator, especially in battery-
operated or power-starved systems. These issues can be side-
stepped by using supermodular surrogates such as the log
determinant [10], [18], despite it being a poor substitute
for quadratic costs in general [5, Remark 1]. Alternatively,
guarantees have been obtained under laxer supermodularity
conditions. They are, however, only available for the uniform
matroid constraint found in selection problems [5], [6], [24]–
[28]. The generic, single matroid case was tackled in a
preliminary version of this work [1].

In this paper, we set out to provide guarantees for the greedy
solution of control scheduling problems subject to complex
constraints represented as intersections of matroids. We start
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by describing the LQG/LQR control scheduling problem and
showing how it can be posed as a constrained set function
optimization problem (Section II). We then proceed to describe
condition under which this problem is tractable. We first show
how greedy solutions can be obtained if the constraints are
an intersection of matroids (Section III-A) and derive near-
optimal certificates for these solutions when the objective
is approximately supermodular (Sections III-B and III-C).
These results generalize those in [1] to the case of multiple
matroid constraints. To conclude, we prove that the LQG
cost function is approximately supermodular, thus yielding
an explicit guarantee for the greedy control scheduling algo-
rithm (Section IV). We argue that these guarantees improve
in scenarios of practical interest by illustrating their typical
values in simulations and motivate the usefulness of this new
result in an agent dispatch application (Section V).

Notation: Lowercase and uppercase boldface letters rep-
resent vectors (x) and matrices (X) respectively, while calli-
graphic letters denote sets (A). We write |A| for the cardinality
of A and X � 0 (X � 0) to say X is positive semi-
definite (definite) matrix. Hence, X � Y ⇔ bTXb ≤ bTY b
for all b ∈ Rn. We write λmax and λmin for the maximum and
minimum eigenvalue of a matrix, respectively, and use R+ to
denote the non-negative real numbers.

II. PROBLEM FORMULATION

Consider a discrete-time, linear dynamical system and let Vk
denote the set of inputs available at time k as illustrated in
Figure 1. Depending on the context, these abstract inputs can
be used to represent actuators, agents, or both. Suppose that
at each time instant, only a subset Sk ⊆ Vk of inputs is used,
so that the states xk ∈ Rn of the system evolve according to

xk+1 = Akxk +
∑
i∈Sk

bi,kui,k + wk, (1)

where, for each time k, Ak denotes the state transition
matrix, bi,k ∈ Rn is a vector representing the effect of
applying the control action ui,k to the i-th input, and wk is
a zero-mean Gaussian vector that models the process noise.
We assume that {wj ,wk} are independent for j 6= k and
that their covariance matrices Ewkw

T
k = Wk are either

positive definite (Wk � 0) for all k or zero (Wk = 0)
for all k, which accounts for the deterministic dynamics
case. Let V = V0 ∪ V1 ∪ · · · ∪ VN−1 be the set of all
actuators available over the N -steps time window [0, N − 1]
and let V ⊇ S = S0 ∪ S1 ∪ · · · ∪ SN−1 be called a schedule,
as it denotes the set of active inputs at each time instant.
We assume without loss of generality that Vj ∩ Vk = ∅
for all j 6= k. Any input v available at more than a single
time instant can then be represented by unique copies, e.g.,
as vj ∈ Vj and vk ∈ Vk (Figure 1).

Given a schedule S ⊆ V , designing the control actions ui,k
reduces to a classical optimal control problem, since (1)
describes a well-defined, time-varying dynamical system. In

Figure 1. Illustration of time-specific and overall input sets and schedules.

particular, we consider the linear-quadratic-Gaussian (LQG)
control problem

V ?(S) = min
U(S)

E

[
N−1∑
k=0

(
xTkQkxk +

∑
i∈S∩Vk

ri,ku
2
i,k

)

+ xTNQNxN

]
, (2)

where U(S) = {ui,k | i ∈ S ∩ Vk}N−1k=0 is the set of valid
control actions, Qk � 0 for all k are the state weights,
and ri,k > 0 for all i and k are the input weights. The relative
value of these weights describe the trade-off between state
regulation (Qk) and input cost (ri,k). The expectation in (2)
is taken with respect to the process noise sequence {wk} and
the initial state x0, assumed to be a Gaussian random variable
with mean x̄0 and covariance Σ0 � 0. When wk = 0 for all k,
(2) reduces to the linear quadratic regulator (LQR) problem.
It is useful to recall that (2) has a closed-form solution that
we describe in the following proposition.

Proposition 1. Given a schedule S ⊆ V , the optimal
value V ?(S) of the LQG problem in (2) can be written as

V ?(S) = Tr [Σ0P0(S)] +

N−1∑
k=0

Tr [WkPk+1(S)] , (3)

where the Pk(S) are obtained via the backward recursion

Pk(S) = Qk + AT
k

(
P−1k+1(S) +

∑
i∈S∩Vk

r−1i,kbi,kb
T
i,k

)−1
Ak,

(4)
starting with PN = QN .

Proof. This result follows directly from the classical dynamic
programming argument for the LQG by taking into account
only the active inputs in S (e.g., see [29]). For ease of
reference, we provide a derivation in the appendix. �

Control scheduling refers to the problem of finding a
schedule S that minimizes the control cost in (2) subject to
time-input constraints, i.e.,

minimize
S⊆V

J(S) , V ?(S)− V ?(∅)

subject to S ∈ Ip, p = 1, . . . , P ,
(PI)

where Ip ⊆ 2V are families of subsets of V that enu-
merates admissible schedules and 2X denotes the power set
of X (the collection of all finite subsets). Typical scheduling
requirements include (i) limits on the total number of control
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actions, (ii) limits on the number of inputs used per time
instant, (iii) restrictions on the consecutive use of inputs,
and combinations thereof. Observe that the constant V ?(∅)
in the objective of (PI) does not affect the solution of the
optimization problem. It is used so that J(∅) = 0, which
simplifies the presentation of our near-optimal certificates.

The complexity of (PI) is tightly related to the anatomy
of its constraints and objective. Indeed, even obtaining a
feasible schedules for (PI) can be hard depending on the
structure of the Ip. Not to mention obtaining a good one.
In fact, (PI) is NP-hard even for constraints as simple as
a budget on the total number of control actions (p = 1
and I = {S ⊆ V | |S| ≤ s}) [6]–[12]. Still, depending
on the nature of the objective and constraints, there exist
simple algorithms able to provide near-optimal approximate
solutions. In the following section, we examine an abstract
version of (PI) and determine conditions under which these
guaranteed approximations are possible, focusing on greedy
methods. We will show that when Ip are independent sets of
matroids (Section III-A), an algebraic structure that generalize
the notions of linear independence in vector spaces, and the
cost function is α-supermodular (Section III-B), a relaxed
diminishing return property of set functions, greedy methods
provide [α/(α+P )]-optimal schedules (Theorem 1). We then
proceed to bound α for the cost J (Section IV) and give
explicit guarantees for greedy solutions of (PI) in terms of
known parameters of the problem (Theorem 2).

III. WHEN IS CONTROL SCHEDULING
TRACTABLE?

In general, the control scheduling problem (PI) is NP-
hard. In fact, it is NP-hard in very simple cases, such as
when the total number of control actions is bounded [6]–
[12]. What is more, even finding a feasible schedule can be
challenging depending on the structure of the constraints and
their representation. To determine when and how solutions
of (PI) can be obtained (or more precisely, approximated),
we study the generic set function optimization problem

X ? ∈ argmin
X⊆E

f(X )

subject to X ∈ I,
(PII)

of which (PI) is an instance. To see this is the case, let E = V ,
f(X ) = J(X ), and I =

⋂P
p=1 Ip. In what follows, we

introduce the conditions on the constraints (Section III-A)
and objective (Section III-B) of (PII) such that a simple
algorithm (greedy search) can be used to generate feasible
solutions that we then prove are near-optimal (Section III-C).
We then proceed to show that (PI) satisfies these conditions
and derive explicit certificates for greedy control scheduling.

A. Matroids

We begin by discussing a constraint structure for which
feasible schedules can be easily constructed. As we mentioned
before, this can, in and of itself, be quite a challenging
problem. Explicitly, we restrict I to be an intersection of
independent sets of matroids, entities that extend the notion

of linear independence in vector spaces to arbitrary algebraic
structures. Formally,

Definition 1. A matroid M = (E , I) consists of a finite set
of elements E and a family I ⊆ 2E of subsets of E called
independent sets that satisfy:
(P1) ∅ ∈ I;
(P2) if A ⊆ B and B ∈ I, then A ∈ I;
(P3) if A,B ∈ I and |A| < |B|, then there exists e ∈ B \ A

such that A ∪ {e} ∈ I.

Hence, we define the collection of valid schedules I in (PII)
to be of the form

I =

P⋂
p=1

Ip, such that (E , Ip) is a matroid for all p. (5)

As we discuss in Section IV, typical scheduling constraints (in
particular those listed in Section II) can be described in terms
of independence sets and their intersection. It is worth noting
that matroids are not closed under intersections, so that I need
not be a matroid [21, Ch. 39].

The use of matroid interscetions as constraints in (PII) is
attractive for two reasons. The first is a direct consequence
of the inheritance property of matroids, i.e., P1 and P2 in
Definition 1.

Proposition 2. For each A ∈ I with I as in (5), there exists
a chain ∅ = A0 ⊂ A1 ⊂ · · · ⊂ AT = A such that At ∈ I for
all t. In particular, there exists a chain with T = |A|.

Hence, every feasible schedule in (PII) can be constructed
element-by-element. In particular, so can any optimal so-
lution X ?. This suggests an “interior point”-type algorithm
that greedily minimizes the objective f at each step while
maintaining feasibility. Explicitly, a greedy solution of (PII) is
constructed by taking G0 = ∅ and incorporating elements of E
one at a time, so that at step t,

Gt+1 = Gt ∪ {gt} (6)

where
gt ∈ argmin

e∈E\Gt
f (Gt ∪ {e})

subject to Gt ∪ {e} ∈ I.
(7)

The algorithm stops once no element can be added to Gt
without violating feasibility, i.e., when the argmin set in (7) is
empty. Denote that final iteration by T . Naturally, T ≤ |E| and
the algorithm does terminate. What is more, note from (6) that
not only is GT ∈ I by construction, but due to Proposition 2,
every set A ∈ I can be constructed by (6) for an appropri-
ate f (e.g., f(X ) = |X ∩ A|). In other words, the greedy
algorithm does not prune any solution from the feasibility set
of (PII).

The second reason for using matroid intersections is related
to the exchange property (P3 in Definition 1) and is laid out
in the following proposition:

Proposition 3. Let A,B ∈ I with I as in (5). If |B| > P |A|,
then there exist at least |B| − P |A| elements b of B \ A such
that A ∪ {b} ∈ I.
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Proof. The proof proceed by induction over the matroids in I.
The base case for first matroid (p = 1) is readily obtained from
P3 in Definition 1. Indeed, take e ∈ B\A such that A∪{e} ∈
I1 and let B′ = B\{e}. This pruning process can be repeated
as long as |B′| > |A|, i.e., at least |B| − |A| times.

Now, suppose the claim holds for the first P ′ − 1 < P
independence sets, i.e., there exists a set C ⊆ B \A such that

|C| > |B| − (P ′ − 1)|A| and A∪ {c} ∈
P ′−1⋂
p=1

Ip for all c ∈ C.

(8)
Notice that B ∈ I ⇒ B ∈

⋂P ′

p=1 Ip and since C ⊂ B, the
inheritance property of matroids (P2 in Definition 1) implies
that C ∈

⋂P ′

p=1 Ip as well. In particular, since C ∈ IP ′ , we
again obtain from P3 in Definition 1 that there exist C′ ⊆ C\A
such that

|C′| > |C| − |A| and A ∪ {c} ∈ IP ′ for all c ∈ C′. (9)

Together, (8) and (9) yield that |C′| > |B|−P ′|A| and that A∪
{c} ∈

⋂P ′−1
p=1 Ip ∩ IP ′ for all c ∈ C′. �

Though more abstract, this property is fundamental to obtain
near-optimal certificates for the procedure in (6). Indeed,
the following noteworthy corollary is obtained for B = X ?
and A = Gt:

Corollary 1. If |X ?| > Pt, then there exist at least |X ?|−Pt
elements x ∈ X ? such that Gt ∪ {x} ∈ I. Hence, it must be
that the algorithm in (6) terminates only after T ≥ |X ?|/P .

At any given point, there are therefore at least |X ?| − Pt
elements x ∈ X ? for which f(Gt+1) ≤ f(Gt ∪ {x}).
When combined with some diminishing return property, this
greedy property gives near-optimal guarantees as long as the
procedure in (6) runs long enough. That is where the lower
bound on T is useful. It stems directly from the fact that, if (6)
stops and returns a set with |GT | < |X ?|/P , Proposition 3
implies there exists at least one element x ∈ X ? such
that GT ∪{x} ∈ I. This contradicts the fact that the feasibility
set of (7) must be empty for the algorithm to terminate.

Naturally, near-optimality depends not only on the feasibil-
ity set I, but also on the objective f . For instance, if f is a
monotone decreasing modular function, then GT is an optimal
solution of (PII) with P = 1 in (5) [21, Ch. 40]; if f is a
monotone decreasing supermodular function, then GT would
be 1/(1 + P )-optimal [22]. It is well-known, however, that
the cost function J of the original control scheduling prob-
lem (PI) is not modular and is supermodular only under strict
conditions [10], [12], [19]. We therefore consider a broader
class of objective functions f known as α-supermodular.

B. α-supermodularity

Supermodularity (submodularity) refers a “diminishing re-
turns” property of certain set functions that yields near-
optimality certificates for their greedy minimization (maxi-
mization). It holds, for instance, for the rank or log det of the
controlability (observability) Gramian of underactuated (un-
derobserved) systems as well as the Shannon entropy and

mutual information of a set of random variables [30], [31].
Supermodularity, however, is a stringent condition that, in
particular, does not hold for the LQG objective of the control
scheduling problem (PI) [9], [10], [12]. To account for this,
different forms of approximate supermodularity (submodular-
ity) have been proposed by allowing controlled violations of
the original “diminishing returns” property. The rationale is
that if a function is close to supermodular, then it should
behave similarly to a truly supermodular function. We for-
malize these statements in the sequel using the concept of α-
supermodularity [25], [26].

Let f : 2E → R be a function defined over subsets X ⊆
E . We say f is normalized if f(∅) = 0 and f is monotone
decreasing if for all sets A ⊆ B ⊆ E it holds that f(A) ≥
f(B). Note that if a function is normalized and monotone
decreasing, then it is non-positive valued, i.e., f(X ) ≤ 0 for
all X ⊆ E . Define the incremental variation

∆uf(X ) = f (X )− f (X ∪ {u}) (10)

to be the change in the value of f from adding u ∈ E to the
set X . Observe that u ∈ X implies that ∆uf(X ) = 0. Then,

Definition 2. A set function f : 2E → R is supermodular if

∆uf(A) ≥ ∆uf(B) (11)

for all sets A ⊂ B ⊆ E and elements u ∈ E \B. A function f
is submodular if −f is supermodular.

Supermodular, monotone decreasing functions play an im-
portant role in the context of scheduling problems due to
the celebrated near-optimal guarantees for their greedy mini-
mization. For instance, if I is a single uniform matroid, i.e.,
I = {S ⊆ V | |S| ≤ s} (cardinality constraint), then GT
is (1 − 1/e)-optimal [32]. In the general case of I as in (5),
it holds that [22]

f(GT ) ≤ 1

1 + P
f(X ?). (12)

Without the supermodularity of the objective, solving or
even approximating simple instances of (PII) can be quite
challenging: there exist functions δ-close to supermodular
that cannot be approximately optimized in polynomial time
unless δ is small [33]. Hence, how we allow this “diminishing
returns” assumption to be violated is crucial in obtaining useful
guarantees. To that effect, we introduce α-supermodularity.
This concept was first proposed in the context of auction de-
sign [34], though it has since been rediscovered and deployed
in discrete optimization, estimation, and control [5], [24]–[28].

Definition 3 (α-supermodularity). A set function f : 2E → R
is α-supermodular, α ∈ R+, if

∆uf(A) ≥ α∆uf(B). (13)

for all sets A ⊂ B ⊆ E and all u ∈ E \ B. A function f is
α-submodular if −f is α-supermodular.

Notice that α-supermodularity is a hereditary property
in the sense that any α-supermodular function is also α′-
supermodular for all α′ < α. What is more, (13) always holds
for α = 0 if f is monotone decreasing. For that reason, we
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are often interested in the largest value of α for which (13)
holds, i.e.,

ᾱ = min
A⊂B⊆E
u∈E\B

∆uf(A)

∆uf(B)
. (14)

When ᾱ ∈ (0, 1), we say f is approximately supermodular.
If ᾱ ≥ 1, (13) implies (11), in which case we refer to f
simply as supermodular [30], [31]. Thus, α-supermodularity
can be used to both relax or strengthen the classical concept
of supermodularity in Definition 2.

Although Definition 3 is in terms of singleton updates, the
approximate diminishing return property in (13) also holds
for set-valued updates. This equivalent definition is often
convenient in derivations.

Proposition 4. The function f : 2E → R is an α-
supermodular set function if and only if

f (Y)− f (Y ∪ C) ≥ α [f (Z)− f (Z ∪ C)] (15)

for all sets Y ⊂ Z ⊆ E and C ∈ E \ Z .

Proof. The necessity part is straightforward: taking C = {u}
for u ∈ E \ Z in (15) yields (13). Sufficiency follows by
induction. Consider an arbitrary enumeration of C and let Ct =
{u1, . . . , ut} be the set containing its first t elements. Then,
the base case C1 = {u1} holds directly from the definition
of α-supermodularity in (13). Suppose now that (15) holds
for Ct−1, i.e.,

f (Y)− f (Y ∪ Ct−1) ≥ α [f (Z)− f (Z ∪ Ct−1)] . (16)

Let A = Y ∪ Ct−1, B = Z ∪ Ct−1, and e = ut in (13) to get

f (Y ∪ Ct−1)− f (Y ∪ Ct−1 ∪ {ut}) ≥
α [f (Z ∪ Ct−1)− f (Z ∪ Ct−1 ∪ {ut})] . (17)

By summing (16) and (17), we conclude that (15) also holds
for Ct = Ct−1 ∪ {ut}. �

Another important property of α-supermodularity is that it is
preserved by non-negative affine combinations.

Proposition 5. Consider the set functions fi : 2E → R
with fi is αi-supermodular. Then, for θi ≥ 0 and β ∈ R,
the function g =

∑
i θifi + β is min(αi)-supermodular.

Proof. See [5, Lemma 1] �

Definition 3 turns out to be a fruitful relaxation of Def-
inition 2. For instance, it has been shown that if f is α-
supermodular and I is composed of a single uniform ma-
troid (cardinality constraint), then its greedy solution is (1 −
e−α)-optimal [5], [24], [25], [34]. When I is a single arbitrary
matroid (P = 1), the greedy solution is α/2-optimal [1]. In
these cases, α not only quantifies the diminishing return viola-
tions, but also the loss in near-optimal guarantee due to these
violations. Explicit lower bounds on α have been provided
in the context of sampling, experiment design, estimation,
and control [1], [5], [25], [26]. Still, these guarantees do not
directly extend to the matroid intersection constraint in (5). In
the next section, we determine how relaxing supermodularity
to α-supermodularity affects the guarantee in (12).

Before proceeding, however, it is worth noting that α in (14)
is related to the supermodularity ratio, a relaxation based on
a different, though equivalent, definition of supermodularity.
Explicitly, the supermodularity ratio is defined as the largest γ
for which ∑

w∈W
∆wf(L) ≥ γ [f(L)− f(L ∪W)] , (18)

for all disjoint sets W,L ⊆ E . It was introduced in [6]1

in the context of variable selection, although the resulting
guarantees depended on sparse eigenvalues that are NP-hard
to compute. Explicit (P-computable) lower bounds on γ were
derived in [27], [28], [35], although it is worth noting that the
previous bounds on α obtained in [25], [36] also hold for the
supermodularity ratio:

Proposition 6. Let f be an α-supermodular and denote its
supermodularity ratio by γ. Then, α ≤ γ.

Proof. We proceed by showing that (18) holds with γ = α
for any α-supermodular function. To do so, consider an
enumeration of W = {w1, . . . , w|W|} and write

f (L) − f (L ∪W) =

|W|∑
k=1

∆wk
f (L ∪ {w1, . . . , wk−1}) .

(19)

Since f is α-supermodular, we can upper bound each of the
increments in (19) using (13) to obtain

f (L)− f (L ∪W) ≤ α−1
|W|∑
k=1

∆wk
f (L) . (20)

Comparing (18) and (20) concludes the proof. �

C. Matroid-constrained α-supermodular minimization

At this point, we have fully specified the optimization
problem we wish to solve and the algorithm we will use to do
so. Explicitly, we are interested in using the greedy method (6)
to approximate the solution of (PII) when the constraint I
is an intersection of matroids as in (5) and the objective f
is a monotone decreasing, α-supermodular function as per
Definition 3. The main result of this section presented in
Theorem 1 provides a near-optimal guarantee under these
conditions. In other words, we show that, though NP-hard
to solve exactly, α-supermodular minimization subject to an
intersection of matroids can be approximated in polynomial
time.

Theorem 1. Consider (PII) with I being an intersection
of matroids as in (5) and f being a normalized, monotone
decreasing, α-supermodular function (i.e., f(A) ≤ 0 for
all A ⊆ E). Let GT be its greedy solution from (6). Then,

f(GT ) ≤ α

α+ P
f(X ?). (21)

1Although [6] and subsequent literature define γ in terms of submodularity,
it can be recovered by taking −f in (18). Recall that if f is supermodular,
then −f is submodular.
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Theorem 1 provides a near-optimal certificate for the greedy
solution of α-supermodular minimization problems subject to
multiple matroid constraints. Since the values of f are non-
positive due to the normalization assumption, the result in (21)
may not be straightforward to interpret. Nevertheless, it can
be written equivalently in terms of improvements with respect
to the empty solution, namely,

f(G)− f(X ?)
f(∅)− f(X ?)

≤ P

α+ P
.

As expected from previous results, the guarantee in (21)
bounds the suboptimality of greedy search in terms of the α-
supermodularity of the cost function. When α < 1, (21)
quantifies the loss in performance guarantee due to the objec-
tive f violating the diminishing returns property. Confirming
our initial intuition, the larger the violations, i.e., the smaller α,
the worst the guarantee. On the other hand, (21) shows that
the classical certificate for supermodular functions in (12)
can be strengthened when f has stronger diminishing returns
structures, i.e., when α ≥ 1. It is easy to see that Theorem 1
is consistent with previous results for single [32] and multi-
ple [22] matroid constraints. Indeed, we can recover (12) by
taking α = 1 in (21).

Observe, however, that (21) decreases linearly with P . In
other words, the guarantees for greedy search deteriorates as
more matroids are needed to represent I. In a sense, this is
the constraint counterpart of α-supermodularity: the further
away from a pure matroid the constraints are, the worst the
greedy algorithm is guaranteed to perform. Effectively, (21)
states that the more the more constraints need to be satisfied,
i.e., the larger P , the harder the problem becomes. Note that P
can be replaced by the minimum number of matroids needed
to represent

⋂P
p=1 I, so that the guarantee from Theorem 2 can

sometimes be improved. Determining this minimum number,
however, can be quite intricate. Still, Theorem 1 is a worst
case bound and as is the case with the classical result for
greedy supermodular minimization [22], [32], better perfor-
mance is often obtained in practice. Still, pathological cases
that approach the bound can be constructed (see Section V).

It is worth noting that in the single matroid case (P = 1),
Theorem 1 is strictly (though not significantly) stronger than
the guarantee from [1] for α < 1. This difference is more
accentuated for small α: for instance, if α = 0.2, (21) is 60%
stronger than the certificate in [1]. A similar certificate was
obtained in [34] with α ≥ 1 for a single matroid constraints.

We now proceed with the proof of Theorem 1.

Proof. This proof follows similarly to the one for the cardi-
nality constraint (uniform matroid) problem, but relying on the
exchange property of matroids through Proposition 3. It may
be informative to recall the proof technique in that simpler
case first, e.g., by referring to [5, Thm. 1].

Let |X ?| = r. Partition the optimal solution in (PII) such
that X ? =

⋃br/Pc
j=0 X ?j ,

∣∣X ?j ∣∣ ≤ P , and

Gt ∪ {x?} ∈ I for x? ∈ X ?t for all t = 0, . . . ,
⌊ r
P

⌋
. (22)

Observe that such a partition exists due to the matroid ex-
change property from Proposition 3. Fix an arbitrary enumer-

ation of each partition X ?t = {x?t1, . . . , x?tp}. The following
proof is independent of the specific enumeration.

Use the fact that f is monotone decreasing to write

f(X ?) ≥ f(GT ∪ X ?)

= f(GT )−
br/Pc∑
t=0

|X?
t |∑

j=1

∆x?
tj
f(T j−1t )

 ,
(23)

where the set T jt contains the greedy solution GT , the elements
of all partitions X ?i up to t − 1, and the first j elements of
partition X ?t . They can be defined recursively as T 0

0 = GT ,
T 0
t = T 0

t−1 ∪ X ?t , and T jt = T 0
t−1 ∪ {x?t1, . . . , x?tj}. Then, we

can bound (23) by distinguishing two cases: (i) if x?tj /∈ T
j−1
t ,

the α-supermodularity of f yields

∆x?
tj
f
(
T j−1t

)
≤ α−1∆x?

tj
f (Gt) , (24)

since Gt ⊆ GT ⊆ T jt for all t and j; (ii) if x?tj ∈ T
j−1
t ,

then ∆x?
tj
f
(
T j−1t

)
= 0 and (24) holds trivially. Using (24)

in (23) gives

f(X ?) ≥ f(GT )− α−1
br/Pc∑
t=0

|X?
t |∑

j=1

∆x?
tj
f(Gt)

 . (25)

The bound in (25) can be simplified using the greedy nature
of the algorithm in (6). Indeed, observe that (22) implies
that ∆x?

tj
f(Gt) ≤ ∆gtf (Gt) for gt is the t-th element selected

as in (7). Hence,

f(X ?) ≥ f(GT )− α−1
br/Pc∑
t=0

|X?
t |∑

j=1

∆gtf(Gt)

 . (26)

Using the fact that the increments are always non-
negative [see (10)] and since |X ?t | ≤ P , (26) reduces to

f(X ?) ≥ f(GT )− α−1P
br/Pc∑
t=0

∆gtf(Gt). (27)

To conclude, observe from (10) that f(GT ) ≤ f(Gt) =
−
∑t−1
t=0 ∆gtf(Gt) and recall from Proposition 3 that T ≥

r/P . Thus,
f(X ?) ≥ (1 + α−1P )f(GT ),

which can be rearranged as in (21). �

IV. NEAR-OPTIMAL INPUT SCHEDULING

In the previous section, we established when, how, and
how well solutions of the generic problem (PII) can be
approximated. We did so by developing a theory for the greedy
optimization of α-supermodular functions subject to multiple
matroid constraints. In the sequel, we reconcile this general
theory with the control scheduling problem (PI) we set out to
solve in the beginning of this paper.

Start by noticing that the feasible set of (PI) is exactly
the intersection of the Ip and that restricting them to be
independent sets of matroids is in fact quite mild. Indeed, all
typical schedule constraints we have discussed so far can be
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Algorithm 1 Greedy algorithm for (PI)
Let S0 ← ∅, Z0 ← E , and t← 0

while Zt 6= ∅
g ← argminu∈Zt

V ?(St ∪ {u})
Zt+1 ← Zt \ {g}
if St ∪ {g} ∈ ∩Pp=1Ip then
St+1 ← St ∪ {g}

else
St+1 ← St

end if
t← t+ 1

end while
Sg ← St

described in those terms. They are in fact instances of uniform,
partition, and transversal matroids respectively:

• bound on the total number of control actions:
I = {S ⊆ V | |S| ≤ s},

• bound on the number of inputs used per time instant:
I = {S ⊆ V | |S ∩ Vk| ≤ sk}, and

• restriction on the consecutive use of inputs:
I = {S ⊆ V | vk /∈ S or vk+1 /∈ S, for vk, vk+1 ∈ V},

Under these conditions, (PI) can be solved greedily using
Algorithm 1. Note that Algorithm 1 does not directly imple-
ment (6) for (PI). Both procedures are nevertheless equiv-
alent due to the matroidal structure of I. Indeed, for any
set A ⊂ B ∈

⋂P
p=1 Ip, if A ∪ {g} /∈

⋂P
p=1 Ip for g ∈ V ,

then B ∪ {g} /∈
⋂P
p=1 Ip. In other words, if adding an

element g to St would make the schedule infeasible, then
adding it to St′ , t′ > t, would do the same. As opposed to (6),
Algorithm 1 simply discards such elements. Additionally, it
omits the constant normalization V ?(∅) since it does not
depend on the schedule.

To proceed, we must show that the objective function J is α-
supermodular and monotone decreasing as well as provide an
explicit lower bound on ᾱ in (14). Without this bound, the
guarantee from Theorem 1 would be of little practical value
as it could not be computed a priori. What is more, near-
optimality certificates based on α-supermodularity are vacuous
unless we can show that α is strictly larger than zero and, at
least under certain conditions, substantially so. We address
these issue with the following proposition:

Proposition 7. Let Ak in (1) be full rank for all k. The nor-
malized actuator scheduling problem objective J is (i) mono-
tonically decreasing and (ii) α-supermodular with

α ≥ min
k=0,...,N−1

αk, (28)

where

αk ≥
λmin

[
P̃
−1
k+1(∅)

]
λmax

[
P̃
−1
k+1(V) +

∑
i∈Vk r

−1
i,k b̃i,kb̃

T

i,k

] , (29)

for P̃ k+1(S) = H
1/2
k Pk+1(S)H

1/2
k , b̃i,k = H

−1/2
k bi,k,

H0 = A0Σ0A
T
0 , and Hk = AkWk−1A

T
k for k ≥ 1.

Proof. See appendix. �

Remark 1. The full rank hypothesis on Ak can be lifted
using a continuity argument. However, the bound in (28) is
trivial (α ≥ 0) for rank deficient state transition matrices, so
we focus only on the case of practical significance.

Proposition 7 states that the objective of (PI) is α-
supermodular for α as in (28). Notice that the lower bound
on ᾱ is explicit in that it can be evaluated in terms of the
parameters of the dynamical system and the weights Qk

and ri,k in (2). In other words, (28) allows us to determine α
a priori for the objective J and with Theorem 1, give near-
optimality guarantees on the greedy solution of (PI). We
collect this result in the theorem below.

Theorem 2. Consider the control scheduling problem (PI)
in which (V, Ip) is a matroid for each p and let S? be its
optimal solution and Sg be its greedy solution obtained using
Algorithm 1. Then,

J(Sg) ≤
α

α+ P
J(S?) (30)

with α ≥ mink=0,...,N−1 αk for

αk ≥
λmin

[
P̃
−1
k+1(∅)

]
λmax

[
P̃
−1
k+1(V) +

∑
i∈Vk r

−1
i,k b̃i,kb̃

T

i,k

] , (31)

where P̃ k+1(S) = H
1/2
k Pk+1(S)H

1/2
k , for Pk(S) defined

in (4), and b̃i,k = H
−1/2
k bi,k. The transformations are

the positive-definite square roots of Hk, defined as H0 =
A0Σ0A

T
0 and Hk = AkWk−1A

T
k for k ≥ 1.

Theorem 2 provides a near-optimal certificate for the greedy
solution of the control scheduling problem (PI) as a function
of its parameters. Note that the larger the α, the better the
guarantee, and that although J is not supermodular in general,
there are situations in which its violations of the diminishing
returns property are small.

To see when this is the case, observe that (31) is large when∑
i∈V0

r−1i,0 b̃ib̃
T

i is small and P̃
−1
1

(
V
)
≈ P̃

−1
1 (∅). (32)

Conditions in (32) occur when diag (ri,k) Ï Qk, i.e., when
the controller (2) gives more weight to the input cost than
state regulation. This condition is readily obtained from the
definition of Pk in (4). Figures 2 and 3 illustrates these
observations by evaluating the bound from (31) for 100
random systems with n = 100 states controlled over a horizon
of N = 4 steps with Q = I and ri,k = γ (see Section V for
details). Clearly, as the controller actions cost grows, i.e., as
γ increases, α grows and Theorem 2 yields stronger guar-
antees. Note that this is a scenario of considerable practical
value. It is well-known that if no restriction is imposed on
the input cost, any controllable set of inputs can drive the
system to any state in a single step (dead-beat controller).
Hence, when diag (ri,k) Î Qk, the optimal value of the
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Figure 2. Bound on α from (28) for a deterministic dynamical system (Wk =
0) and a schedule of length N = 4. Shaded regions span two standard
deviations from the mean.

LQG only really differentiates between schedules that lead to
controllable and uncontrollable input sets. On the other hand,
careful scheduling can have a considerable impact when the
actuation (or agent deployment) costs are high. This is also
the case in which Theorem 2 provides stronger guarantees.

Observe also that since matrices are weighted by Hk, the
condition numbers of A, Σ0, and Wk play an important
role in the guarantees. Indeed, if Hk is poorly conditioned,
there may be a large difference between the minimum and
maximum eigenvalues in (31). This is illustrated in Figure 2,
which shows that when the decay rate of the system modes
are considerably different, i.e., the state transition matrix has
large condition number κ(A), the guarantees from Theorem 2
worsen. Figure 3 illustrates this phenomenon for the LQG
controller, showing how the value of α decreases when the
process noise does not affect the states homogeneously, i.e.,
the condition number of Wk grows.

In the sequel, we provide details on the experiments pre-
sented in this section and illustrate the use of greedy control
scheduling under multiple non-trivial constraints using an
agent dispatching application.

V. NUMERICAL EXAMPLES

We start by detailing the experiments in Figures 2 and 3. We
considered dynamical systems with n = 100 states for which
the elements of A were drawn randomly from a standard
Gaussian distribution, the input matrix B = I , i.e., direct state
actuation, and Π0 = 10−2I . The state transition matrix A was
normalized so that its spectral radius is 1.1, i.e., the dynamical
systems are unstable. In Figure 2, the dynamical systems are
deterministic, i.e., Wk = 0. In Figure 3, Wk is a diagonal
matrix whose elements were drawn uniformly at random
from [κ(W )−1, 1] so that their condition number is κ(W ).
The figures show the result for 100 independently drawn
dynamical systems considering (PI) for Q = I , ri,k = γ for
all i and k, and N = 4.

Figure 3. Bound on α from (28) for a dynamical system with disturbance and
a schedule of length N = 4. Shaded regions span two standard deviations
from the mean.

While Figures 2 and 3, along with Theorem 2, illustrate
the wide range of parameters over which good performance
certificates can be provided, it is worth noting that these
are worst-case guarantees and that better results are common
in practice. To illustrate this point, we evaluate the relative
suboptimality of greedily selected schedules over 100 system
realizations. Explicitly, we evaluate

ν?(Sg) =
J(Sg)
J(S?)

,

where Sg and S? are the greedy (Algorithm 1) and optimal
solutions of (PI) respectively. Since ν? depends on the op-
timal schedule, which can only be obtained by exhaustive
search, we restrict ourselves to smaller dynamical systems
with n = 7 states. State space matrices A and B are as
before, with κ(A) = 1.2, and Wk = 0 (LQR case). We again
take Q = I and ri,k = γ.

In Figure 4, we design schedules for N = 4 steps horizons
with different numbers of matroid constraints P . In Figure 4a,
we select at most 2 actuators per time step (I1 = {S ⊆
V | |S ∩ Vk| ≤ 2}). In addition to I1, Figure 4b also
imposes that at most 5 control actions can be taken over
the horizon (I2 = {S ⊆ V | |S| ≤ 5}). Finally, Figure 4c
includes a restriction on using the same input on consecutive
time steps on top of I1 and I2. Despite the fact that the
lower bounds on ν? (recall that J is a non-positive function)
from Theorem 2 range from 0.03 to 0.25, Figure 4 show that
the typical performance of greedy scheduling in practice is
considerably better. Though it did not often find the optimal
schedule (between 15% and 23% of the realizations for γ = 1
and 40% and 46% for γ = 10), the resulting schedule
performances were at most 5% lower than the optimum. Note,
however, that there exist specific dynamical systems for which
greedy performs close to the guarantee in Theorem 2. Indeed,
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(a) P = 1 (b) P = 2 (c) P = 3

Figure 4. Relative suboptimality of greedy scheduling for different constraints (100 system realizations). (a) I1 (less than 2 actuators per time step); (b) I1
and I2 (less than 5 control actions over the horizon); (c) I1, I2, and I3 (inputs cannot be used on consecutive time slots).

0 400 800 1200 km

Agent 1

Agent 2

Figure 5. Amazon basin, amazon river (dark blue trace), system states (light
grey circles), and chemical spill origins (red circles).

consider A = I and

B =

2 1 0
2 0 1
1 1 1

 .

Under constraint I1, i.e., if we schedule up to 2 inputs per
time step, over a N = 2 steps horizon with γ = 100, the
guarantee in (30) yields ν?(Sg) ≥ 0.392, whereas in practice
we achieve ν?(Sg) ≈ 0.423.

A. Agent dispatching on the Amazon river
In this section, we illustrate the use of greedy control

scheduling in an agent dispatching application to control the
effect of spills on the Amazon river. Two agents navigate up
and down the river (dark blue curve in Figure 5) over a preset
route and use a chemical component to counteract damaging
spills. Due to the limited capacity of each vessel and to avoid
overusage, each agent is allowed to dump the component at
most 5 times. What is more, at least 2 steps must be allowed
between each action so the crew has time to setup. The goal
of this dispatch is to reduce how much of the spill reaches the
ocean (light blue water mass in Figure 5).

The Amazon drainage basin, showed in green in Figure 5,
covers 7.5 million km2 and is composed of over 7000 tribu-
taries. We use a simplified description of the basin (blue traces
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Figure 6. Greedy schedule and actuation energy of the spill control agents.

in Figure 5) obtained by smoothing the original map [37].
Using this river network, we construct a weighted directed
tree G whose vertices are the circles from in Figure 5 with the
addition of a node midway between each circle. These vertices
compose the n = 127 states xk of the dynamical system. In G,
two vertices are connected if water flows between them, i.e.,
if there is a blue line between them in Figure 5. We assume
that all river flow toward the ocean, denoted in Figure 5 by
a light blue water mass. The adjacency matrix of G is then
defined as

[G]ij =

{
‖zi − zj‖ , if (i, j) ∈ E
0, otherwise

(33)

where zi ∈ R2 is the position of node i on the map. We define
its Laplacian as L = D −G, where D is a diagonal matrix
whose elements are the sum of the columns of G, and its
symmetrized Laplacian as L′ = D′− (G+GT ), where D′ is
a diagonal matrix whose elements are the sum of the columns
of G + GT .

Using these Laplacians, we define the state transition matrix
of the dynamical system in (1) as

A = 0.901 exp(−L∆t) + 0.099 exp(−L′∆t), (34)

where ∆t = 5 is the sampling period. The dynamics in (34)
are a combination of two processes: the first term corresponds
to the advection process by which water flows to the ocean
and the second term corresponds to a diffusion process. The
combination coefficients are chosen so that the system is
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Figure 7. Agents actions and chemical concentrations in the ocean (light blue
mass in Figure 5) for the autonomous system (no agent), greedy schedule,
and full actuation.

marginally stable (‖A‖ = 1). In these experiments, we assume
there is no process noise, i.e., Wk = 0 for all k, and direct
state actuation. The two spills are modeled by spikes in the
initial state, namely x0 is zero except at the red nodes in
Figure 5.

Agent 1 navigates the Amazon river (dark blue curve) left-
to-right and Agent 2 navigates right-to-left (starting near the
ocean). They can only actuate on their current position and
are only allowed to do so on the states marked as circles in
Figure 5. Thus, a centralized greedy scheduler designs a N =
20 steps action plan for the two agents taking into account their
positions at each time step and their total number of actions
and duty cycle constraints. To do so, it assumes Q = I for
both agents, but takes r(1)i,k = 10 for Agent 1 and r

(2)
i,k = 20

for Agent 2. In other words, Agent 1 is allowed to dump more
cleaning component. The results of this dispatch are shown in
Figures 6 and 7.

Notice that in the final schedule (Figure 6), the agents
effectively act on top of the spills and towards the middle of
the river to try and stop their spreading. Agent 1, in particular,
saves cleaning reagent for one last action next to ocean. What
is more, since it pays a lower price for actuation (r(1)i,k < r

(2)
i,k ),

it is able to use more reagent than Agent 2, which ends up
concentrating its efforts in the beginning of its route (Fig-
ures 7). In the end, the vessels are able to mitigate the impact
of the spills on the ocean waters, reducing contamination levels
by 60% compared to the no-actuation solution. The final level
achieved with these punctual actions is comparable to using
an 64 agents that actuate every state at every time step with
cost matrices Q = I and ri,k = 2500 (Figure 7).

VI. CONCLUSION

We studied the control scheduling problem in which agents
or actuators are assigned to act upon a dynamical system at
specific times so as to minimize the LQG/LQR objective.
We considered the case in which budget and operational
scheduling constraints can be encoded as an intersection of

P matroids, which can describe any combination of limits
on the number of agents deployed per time slot, total num-
ber of actuator uses, duty cycle restrictions. . . We showed
that this structure allows schedules to be built greedily, i.e.,
by adding system inputs one-by-one choosing the one that
most reduces the control cost. We then showed that for α-
supermodular objectives this procedure is α/(α+ P )-optimal
and provided an explicit, system-dependent lower bound on α
for the LQG/LQR cost. This bound approaches unity and
yield supermodular-like guarantees in relevant application sce-
narios. Combining these results, we presented a near-optimal
certificate for greedy scheduling that validates its empirical
success. We believe that the near-optimality results derived
for approximately supermodular functions are of independent
interest and can be extended to other applications, such as
experimental design using polymatroids. An important future
challenge to overcome in these discrete control problems is
taking into account state and actuation constraints.
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APPENDIX

PROOF OF PROPOSITION 1

Proof. This result follows directly from the classical dynamic
programming argument for the LQG by considering only the
inputs in S (see, e.g., [29]). We display the derivations here

for ease of reference. Explicitly, we proceed by backward
induction, first defining the cost-to-go function

Vj(S) = min
Uj(S)

E

[
N−1∑
k=j

(
xTkQkxk +

∑
i∈S∩Vk

ri,ku
2
i,k

)

+ xTNQNxN

]
, (35)

where Uj(S) = {ui,k|i ∈ S ∩ Vk}N−1k=j is the subsequence of
control actions from time j to the end of the control horizon.
Notice due to the additivity of (35), it admits the equivalent
recursive definition

Vj(S) = min
Uj(S)

E

[
Vj+1(S) + xTj Qjxj +

∑
i∈S∩Vj

ri,ju
2
i,j

]
.

(36)
To proceed, we postulate that (35) has the form

Vj(S) = xTj Pj(S)xj + qj , (37)

for some Pj(S) � 0 and qj > 0 and show that this is indeed
the case by recursion. To do so, observe that for the base
case j = N , (35) becomes VN (S) = xTNQNxN and (37)
holds trivially by taking PN (S) = QN � 0 and qN = 0. Now,
assume that (37) holds for j+1. Using the system dynamics (1)
in (37), we can expand Vj(S) to read

Vj(S) = min
Uj(S)

E

[
xTj
(
Qj + AT

j Pj+1Aj

)
xj

+

 ∑
i∈S∩Vj

bi,jui,j

T

Pj+1(S)

 ∑
i∈S∩Vj

bi,jui,j


+ 2xTj A

T
j Pj+1(S)

 ∑
i∈S∩Vj

bi,jui,j


+ 2wT

j Pj+1(S)

 ∑
i∈S∩Vj

bi,jui,j

+ 2xTj A
T
j Pj+1(S)wj

+ wT
j Pj+1(S)wj +

∑
i∈S∩Vj

ri,ju
2
i,j + qj+1

]
. (38)

Recall that the expected value is taken over the process
noises noise wk and the initial state x0. Note that the terms
linear in wj vanish since it is zero-mean and that (38) is
actually a quadratic optimization problem in the {ui,j}. This
is straightforward to see by rewriting (38) in matrix form:

Vj(S) = min
uj

uTj
(
Rj + BT

j Pj+1(S)Bj

)
uj

+ 2xTj A
T
j Pj+1(S)Bjuj

+ xTj
(
Qj + AT

j Pj+1Aj

)
xj

+ Tr (Pj+1(S)Wj) + qj+1,

(39)

where uj = [ui,j ]i∈S∩Vj is a |S ∩ Vj | × 1 vector that collects
the control actions, Bj = [bi,j ]i∈S∩Vj is an n × |S ∩ Vj |
matrix whose columns contain the input vectors correspond-
ing to each control action, Rj = diag(ri,j), and we used

http://www.ore-hybam.org/index.php/eng/Data/Cartography/Amazon-basin-hydrography
http://www.ore-hybam.org/index.php/eng/Data/Cartography/Amazon-basin-hydrography
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the that E
[
wT
j Pj+1(S)wj

]
= Tr (Pj+1(S)Wj). Observe

that (39) is classical LQR problem, up to constant terms [29].
Its minimum is then of the form (37) with

Pj(S) = Qj + AT
j

P−1j+1(S) +
∑

i∈S∩Vj

r−1i,j bi,jb
T
i,j

−1 Aj ,

and qj = Tr (Pj+1(S)Wj)+qj+1. Unrolling the recursion and
using the fact that E[x0x

T
0 ] = Σ0 yields the result in (3). �

PROOF OF PROPOSITION 7
Proof. Start by defining

Jk(S) = Tr [Πk−1Pk(S)] (40)

with Π−1 = Σ0 and Πk = Wk for k = 0, . . . , N − 2 and
from (3), notice that the objective J of (PI) can be written as

J(S) =

N−1∑
k=0

Jk(S) + Tr [WN−1QN ]− V ?(∅). (41)

Hence, using the non-negative affine combination property in
Proposition 5, we can ignore the terms constant in S and
lower bound the approximate supermodularity of J in terms
of the approximate supermodularity of its components. Ex-
plicitly, if Jk in (40) is αk-supermodular, then J is min(αk)-
supermodular.

We can further reduce the problem by using (4) to get

Jk(S) = Tr

Hk

(
P−1k+1(S) +

∑
i∈S∩Vk

r−1i,kbi,kb
T
i,k

)−1
+ Tr [Πk−1Qk] .

(42)
where we used the circular shift property of the trace to
get Hk = AkΠk−1A

T
k . Thus, applying Proposition 5 again,

we can ignore the constant term in (42) and restrict to studying
the α-supermodularity of

J̄k(S) = Tr

Hk

(
P−1k+1(S) +

∑
i∈S∩Vk

r−1i,kbi,kb
T
i,k

)−1 .

(43)
To proceed, notice that Hk � 0 since Πk � 0 and Ak is full

rank for all k. Hence, it has a unique positive definite square
root H1/2 � 0 such that H = H1/2H1/2 [38]. Deploying
the circular shift property of the trace and the invertibility
of H1/2, (43) can be written as

J̄k(S) = Tr

(P̃−1k+1(S) +
∑

i∈S∩Vk

r−1i,k b̃i,kb̃
T

i,k

)−1 . (44)

with P̃ k+1(S) = H
1/2
k Pk+1(S)H

1/2
k and b̃i,k = H

−1/2
k bi,k.

The function J̄k in (44) has a form that allows us to leverage
the following result from [5, Thm. 3], which we reproduce
here for ease of reference:

Lemma 1. Let h : 2E → R be the set trace function

h (A) = Tr

(M∅ +
∑
i∈A

Mi

)−1 , (45)

where A ⊆ E , M∅ � 0, and Mi � 0 for all i ∈ E . Then, h
is (i) monotonically decreasing and (ii) α-supermodular with

α ≥ λmin [M∅]

λmax

[
M∅ +

∑
i∈VMi

] > 0. (46)

Comparing (44) and (45), we can bound the αk for Jk as

αk ≥ min
S⊆V

λmin

[
P̃
−1
k+1(S)

]
λmax

[
P̃
−1
k+1(S) +

∑
i∈Vk r

−1
i,k b̃i,kb̃

T

i,k

] . (47)

Nevertheless, the bound in (47) depends on the choice of S.
To obtain a closed-form expression, we use the following
proposition:

Proposition 8. For any S ⊆ V , it holds that

P̃ k(V) � P̃ k(S) � P̃ k(∅), for k = 1, . . . , N − 1. (48)

Using (48) in (47) and the fact that matrix inversion is
operator antitone yields the bound in (28). �

All that remains is therefore to prove Proposition 8.

Proof of Proposition 8. Start by noticing that since H1/2 is
full rank, it is enough to establish (8) directly for Pk. Indeed,
A � B ⇔ xTAx ≤ xTBx for all x ∈ Rn and for M � 0,
this is equivalent to taking x = My for all y ∈ Rn.

We prove both inequalities by recursion. For the upper
bound in (48), note from (4) that P̃ k can be increased by using
no actuators at instant k. Formally, for any choice of S ⊆ V ,

Pk(S) = Qk + AT
k

(
P−1k+1(S) +

∑
i∈S∩Vk

r−1i,kbi,kb
T
i,k

)−1
Ak

� Qk + AT
kPk+1(S)Ak = Pk(S \ Vk).

Additionally, if P̄ k+1 � Pk+1(S) for all S ⊆ V , it holds that

Pk(S) � Qk + AT
k P̄ k+1Ak , P̄ k. (49)

Starting from PN � QN , P̄N , we obtain that Pk is upper
bounded by taking S = ∅, i.e., using no actuators.

The lower bound is obtained in a similar fashion by using
all possible actuators. Explicitly,

Pk(S) = Qk + AT
k

(
P−1k+1(S) +

∑
i∈S∩Vk

r−1i,kbi,kb
T
i,k

)−1
Ak

� Qk + AT
k

(
P−1k+1(S) +

∑
i∈Vk

r−1i,kbi,kb
T
i,k

)−1
Ak

= Pk(S ∪ Vk).

Moreover, if
¯
P k+1 � Pk+1(S) for all S ⊆ V , we have that

Pk(S) � Qk+AT
k

(
¯
P−1k+1 +

∑
i∈Vk

r−1i,kbi,kb
T
i,k

)−1
Ak ,

¯
P k.

(50)
Starting from PN � QN ,

¯
PN yields the lower bound

in (48). �
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