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This is a collection of additional exercises, meant to supplement those found in the book Convex
Optimization, by Stephen Boyd and Lieven Vandenberghe. These exercises were used in several
courses on convex optimization, EE364a (Stanford), EE236b (UCLA), or 6.975 (MIT), usually for
homework, but sometimes as exam questions. Some of the exercises were originally written for the
book, but were removed at some point.

Many of them include a computational component using one of the software packages for convex
optimization: CVXPY (Python), Convex.jl (Julia), CVX (Matlab), or CVXR (R). We refer to
these collectively as CVX*. (Some problems have not yet been updated for all languages.) The files
required for these exercises can be found at the book web site www.stanford.edu/ boyd/cvxbook/.

You are free to use these exercises any way you like (for example in a course you teach), provided
you acknowledge the source. In turn, we gratefully acknowledge the teaching assistants (and in
some cases, students) who have helped us develop and debug these exercises. Pablo Parrilo helped
develop some of the exercises that were originally used in MIT 6.975, Sanjay Lall and John Duchi
developed some other problems when they taught EE364a, and the instructors of EE364a during
summer quarters developed others.

We’ll update this document as new exercises become available, so the exercise numbers and
sections will occasionally change. We have categorized the exercises into sections that follow the
book chapters, as well as various additional application areas. Some exercises fit into more than
one section, or don’t fit well into any section, so we have just arbitrarily assigned these.

Course instructors can obtain solutions to these exercises by email to us. Please specify the
course you are teaching and give its URL.

Stephen Boyd and Lieven Vandenberghe
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1 Introduction

1.1 Convex optimization. Are the following statements true or false?

Least squares is a special case of convex optimization.

(a)
(b)
()

)

(d) Convex optimization problems are attractive because they always have a unique solution.

By and large, convex optimization problems can be solved efficiently.

Almost any problem you’d like to solve in practice is convex.

1.2 Device sizing. In a device sizing problem the goal is to minimize power consumption subject to the
total area not exceeding 50, as well as some timing and manufacturing constraints. Four candidate
designs meet the timing and manufacturing constraints, and have power and area listed in the table

below.
Design Power Area
A 10 50
B 8 55
C 10 45
D 11 50

Are the statements below true or false?

(a) Design B is better than design A.
(b) Design C is better than design A.
(¢) Design D cannot be optimal.

1.3 Computation time. Very roughly, how long would it take to solve a linear program with 100
variables and 1000 constraints on a computer capable of carrying out a 10 Gflops/sec (i.e., 1010
floating-point operations per second)?

) Microseconds.

b)

(©)

(d) Minutes.

Milliseconds.

(a
(
Seconds.

1.4 Local optimization. Are the statements below true or false?

(a) Local optimization can be quite useful in some contexts, and therefore is widely used.
(b) Local optimization is currently illegal in 17 states.

(¢) Local optimization can’t guarantee finding a (global) solution, and so is not widely used.



2.1

2.2

2.3

24

2 Convex sets

Is the set {a € R¥ | p(0) =1, |p(t)] < 1 for a <t < S}, where
p(t) = ay +agt + - + axt" 7,

convex?

Set distributive characterization of convezity [Rockafellar]. Show that C' C R" is convex if and
only if (a4 8)C = aC + pC for all nonnegative «, . Here we use standard notation for scalar-set
multiplication and set addition, i.e., aC ={ac|ce C}and A+ B={a+b|ac A, be B}.

Composition of linear-fractional functions. Suppose ¢ : R" — R™ and ¢ : R™ — RP are the

linear-fractional functions

B Ax +b
T+ d

_By+f

o(x) = m7

Y(y)

with domains dom ¢ = {z | ¢!z +d > 0}, domv = {y | g*= + h > 0}. We associate with ¢ and
1) the matrices
A b E f
' a gt h |’
respectively.
Now consider the composition I" of ¢ and ¢, i.e., I'(x) = ¢¥(¢(z)), with domain

domI = {z € dom ¢ | ¢(z) € dom}.

Show that I' is linear-fractional, and that the matrix associated with it is the product
E f A b
gt h ' d |

Dual of exponential cone. The exponential cone Keyxp C R? is defined as
Kexp = {(x,y, Z) | y > 0, yex/y < Z}.

Find the dual cone K*

exp*

We are not worried here about the fine details of what happens on the boundaries of these cones,
so you really needn’t worry about it. But we make some comments here for those who do care
about such things.

The cone Ky, as defined above is not closed. To obtain its closure, we need to add the points
{(z,y,2) [ <0, y=0, 2> 0}.

(This makes no difference, since the dual of a cone is equal to the dual of its closure.)



2.5 Dual of intersection of cones. Let C and D be closed convex cones in R". In this problem we will
show that
(CNnD)*=C*"+ D*

when C* + D* is closed. Here, + denotes set addition: C*+ D* is the set {u+v | u € C*, v € D*}.
In other words, the dual of the intersection of two closed convex cones is the sum of the dual cones.
(A sufficient condition for of C* 4+ D* to be closed is that C Nint D # (). The general statement is
that (C' N D)* = cl(C* + D*), and that the closure is unnecessary if C' Nint D # (), but we won’t
ask you to show this.)

(a) Show that C'N D and C* + D* are convex cones.
(b) Show that (C'n D)* O C* + D*.
(¢) Now let’s show (CND)* C C*+ D* when C*+ D* is closed. You can do this by first showing

(CND)y*CC*"+ D" < CNDD(C*+ D"
You can use the following result:

If K is a closed convex cone, then K** = K.

Next, show that C' N D O (C* + D*)* and conclude (C'N D)* = C* + D*.
(d) Show that the dual of the polyhedral cone V' = {z | Az > 0} can be expressed as

V*={ATv | v = 0}.
2.6 Polar of a set. The polar of C C R" is defined as the set
C°={yeR"|ylz<1foralzeC}

(a) Show that C° is convex (even if C is not).

(b) What is the polar of a cone?

(c) What is the polar of the unit ball for a norm || - ||?

(d) What is the polar of the set C = {z | 172 =1, z = 0}?

(e) Show that if C' is closed and convex, with 0 € C, then (C°)° = C.

2.7 Dual cones in R?. Describe the dual cone for each of the following cones.
(a) K ={0}.

(b) K = R2

(c) K ={(z1,32) | [1] < m2}.
(d) K = {(l‘l,l‘Q) | 1+ XTo = 0}.

2.8 Conwvexity of some sets. Determine if each set below is convex.

(a) {(z.y) eRY, |a/y <1}
(b) {(z,y) R | 2/y > 1}



(c) {(z,y) €RE |2y <1}
(d) {(z,y) €eRE |2y > 1}

2.9 Correlation matrices. Determine if the following subsets of S" are convex.

(a) the set of correlation matrices, C* ={C € S’} |Cyy =1, i=1,...,n}

(b) the set of nonnegative correlation matrices, {C € C" | C;; >0, i,j =1,...,n}

(c) the set of highly correlated correlation matrices, {C € C" | C;; > 0.8, i,j =1,...,n}
2.10 Helly’s theorem.

(a) (Radon’s theorem) Let X = {z1,...,x,,} be a set of m points in R", where m > n+ 2. Show
that X can be partitioned in two sets S and T'= X \ S such that

conv SNconv T # ().

Here conv S and conv T denote the convex hulls of S and T'.
Hint. Since m > n + 2, the vectors (x;,1), ¢ = 1,...,m, are linearly dependent. Therefore
there exists a nonzero y such that

Y1
1 X9 - Ty Y2 _0
11 1 2 e
Ym

Use y to define S and T, and to construct a point € conv .S N conv 7.

(b) Use the result in (a) to prove the following. Let Si, ..., Sy, be a collection of convex sets
in R™, where m > n 4+ 2. Suppose the intersection of every m — 1 sets from the collection is
nonempty, i.e., the set

ﬂ S =81NNSe1NSps1N---NSpy
ie{L,m P\ {k}

is nonempty for each kK = 1,...,m. Then the intersection of all sets Sy, ..., Sy, is nonempty:
(] Si=Sin--NSy#0.
i=1,....m
Hint. Apply the result in part (a) to m points 1, ..., z,, chosen to satisfy

T € m S;.

ie{1,..,mp\{k}

The result in (b) is easily rephrased in a more general form, known as Helly’s theorem. Let S, ...,
Sm be a collection of m convex sets in R™. Suppose the intersection of every k < n + 1 sets from
the collection is nonempty. Then the intersection of all sets S, ..., Sy, is nonempty.

2.11 Define the square S = {z € R? |0 < z; < 1, i = 1,2}, and the disk D = {z € R? | ||z||s < 1}. Are
the following statements true or false?



(a) SN D is convex.
(b) SUD is convex.
(¢) S\ D is convex.

2.12 Convex and conic hull. Let C = {(1,0),(1,1),(—1,—-1),(0,0)}. Are the following statements true
or false?

(a) (0,—1/3) € conv C.
(b) (0,1/3) € conv C.
(c) (0,1/3) is in the conic hull of C.

2.13 Minimal and minimum elements. Consider the set S = {(0,2), (1,1), (2,3), (1,2), (4,0)}. Are
the following statements true or false?

is the minimum element of S.

)

) is a minimal element of S.
) is a minimal element of S.
)

Here, minimum and minimal are with respect to the nonnegative orthant K = Ri.

2.14 Affine set. Show that the set {Ax + b | Fz = g} is affine. Here A € R™*", b € R™, F € RP*",
and g € RP.

2.15 Let S={a € R3| a1 + aze™ " + aze™ < 1.1 for t > 1}. Is S affine, a halfspace, a convex cone, a
convex set, or none of these? (For each one, you can respond true or false.)

2.16 Generalized inequality. Let K = {(x1,22) | 0 < 21 < x2}. Are the following statements true or
false?

(a) (1,3) <Kk (3,4).

(b) (—1,2) € K*.

()

(d)

The unit circle (i.e., {x | ||z||2 = 1}) does not contain a minimum element with respect to K.
T

he unit circle does not contain a minimal element with respect to K.



3.1

3.2

3.3

3.4

3.5

3 Convex functions

Mazximum of a convex function over a polyhedron. Show that the maximum of a convex function f
over the polyhedron P = conv{vy,...,v;} is achieved at one of its vertices, i.e.,

sup f(z) = max f(v;).
zeP i=1,...,

(A stronger statement is: the maximum of a convex function over a closed bounded convex set is
achieved at an extreme point, i.e., a point in the set that is not a convex combination of any other
points in the set.) Hint. Assume the statement is false, and use Jensen’s inequality.

A general vector composition rule. Suppose

f(@) = h(g1(2), g2(), - - ., gr(2))

where h : RF — R is convex, and ¢; : R” — R. Suppose that for each i, one of the following holds:

e h is nondecreasing in the ith argument, and g; is convex
e h is nonincreasing in the ith argument, and g; is concave

e g; is affine.

Show that f is convex. This composition rule subsumes all the ones given in the book, and is
the one used in software systems that are based on disciplined convex programming (DCP) such
as CVX*. You can assume that domh = R”; the result also holds in the general case when the
monotonicity conditions listed above are imposed on iz, the extended-valued extension of h.

Logarithmic barrier for the second-order cone. The function f(z,t) = —log(t?—2"z), with dom f =
{(z,t) e R" xR | t > ||z||2} (i.e., the interior of the second-order cone), is called the logarithmic
barrier function for the second-order cone. There are several ways to show that f is convex,
for example by evaluating the Hessian and demonstrating that it is positive semidefinite. In this
exercise you establish convexity of f using a relatively painless method, leveraging some composition
rules and known convexity of a few other functions.

(a) Explain why ¢t —(1/t)u”u is a concave function on dom f. Hint. Use convexity of the quadratic
over linear function.
(b) From this, show that —log(t — (1/t)u’u) is a convex function on dom f.
(¢) From this, show that f is convex.
A quadratic-over-linear composition theorem. Suppose that f : R™ — R is nonnegative and convex,

and g : R" — R is positive and concave. Show that the function f2/g, with domain dom fNdom g,
is convex.

A perspective composition rule [Maréchal]. Let f : R™ — R be a convex function with f(0) < 0.

(a) Show that the perspective tf(z/t), with domain {(x,t) | ¢ > 0, z/t € dom f}, is nonincreasing
as a function of ¢.



3.6

3.7

3.8

3.9

3.10

3.11

(b) Let g be concave and positive on its domain. Show that the function
W) = g(x)f(z/g(x)),  domh={rcdomg|z/g(z) € dom f}

is convex.

(¢) As an example, show that

JZ‘T.Z'

h(:ﬂ) = (szl xk)l/nv

domh =R,

is convex.

Perspective of log determinant. Show that f(X,t) = ntlogt—tlogdet X, with dom f = S | xR,
is convex in (X, t). Use this to show that

9(X) = n(tr X)log(tr X) — (tr X)(log det X)
= n (Z /\z> (log Z Ai — Z log /\2> s
i=1 i=1 i=1

where ); are the eigenvalues of X, is convex on S .

Pre-composition with a linear fractional mapping. Suppose f : R™ — R is convex, and A € R™*",
beR™, ce R", and d € R. Show that ¢ : R™ — R, defined by

g(z) = (P 4+ d) f(Az + b) /(T 'z + d)), domg = {z | Tz +d >0},
is convex.

Scalar valued linear fractional functions. A function f : R™ — R is called linear fractional if it has
the form f(z) = (a”x +b)/(c"x + d), with dom f = {z | ¢"z +d > 0}. When is a linear fractional
function convex? When is a linear fractional function quasiconvex?

Show that the function 1A b|]2
_ 14T ~ i3

is convex on {z | ||z|]2 < 1}.

Weighted geometric mean. The geometric mean f(x) = ([, zx)"/" with dom f = R"__is concave,
as shown on page 74 of the book. Extend the proof to show that

f(:E):H:Egk, dom f =R
k=1

is concave, where ay, are nonnegative numbers with Y ;' ag < 1.
Suppose that f: R™ — R is convex, and define
g(@,t) = f(z/t), domg={(z,t)|z/t €domf, t >0}

Show that g is quasiconvex.



3.12

3.13

3.14

3.15

Continued fraction function. Show that the function

1

f(z) = 1
T -
2= =71

r3 — —
L4

defined where every denominator is positive, is convex and decreasing. (There is nothing special
about n = 4 here; the same holds for any number of variables.)

Clircularly symmetric Huber function. The scalar Huber function is defined as

_ @29 <1
fiun() = { 2l = 1/2 Jal > 1.

This convex function comes up in several applications, including robust estimation. This prob-
lem concerns generalizations of the Huber function to R". One generalization to R"™ is given
by foub(21) + -+ + faun(zn), but this function is not circularly symmetric, i.e., invariant under
transformation of 2 by an orthogonal matrix. A generalization to R" that is circularly symmetric

is
]2 <1

|lzl]2 > 1.

T 2
e

(The subscript stands for ‘circularly symmetric Huber function’.) Show that feshup is convex. Find
the conjugate function fJ; ..

Reverse Jensen inequality. Suppose f is convex, A1 > 0, A\; <0,i=2,...,k,and \{ +---+ A\, = 1,
and let x1,...,2, € dom f. Show that the inequality

Fvzr + -4+ Apzn) > A f(z) + -+ A f(2p)

always holds. Hints. Draw a picture for the n = 2 case first. For the general case, express x1 as a
convex combination of A\yxq + -+ + Apz, and xo,...,x,, and use Jensen’s inequality.

Monotone extension of a convex function. Suppose f : R™ — R is convex. Recall that a function
h : R™ — R is monotone nondecreasing if h(z) > h(y) whenever = = y. The monotone extension
of f is defined as
= inf .

g(x) = inf f(z +2)
(We will assume that g(z) > —o0.) Show that g is convex and monotone nondecreasing, and
satisfies g(x) < f(z) for all . Show that if h is any other convex function that satisfies these
properties, then h(z) < g(z) for all . Thus, ¢ is the maximum convex monotone underestimator
of f.
Remark. For simple functions (say, on R) it is easy to work out what g is, given f. On R", it

can be very difficult to work out an explicit expression for g. However, systems such as CVX* can
immediately handle functions such as g, defined by partial minimization.

10



3.16

3.17

3.18

3.19

3.20

Clircularly symmetric convez functions. Suppose f : R™ — R is convex and symmetric with respect
to orthogonal transformations, i.e., f(x) depends only on ||z||2. Show that f must have the form
f(z) = ¢(]|z]]2), where ¢ : R — R is nondecreasing and convex, with dom f = R. (Conversely,
any function of this form is symmetric and convex, so this form characterizes such functions.)

Infimal convolution. Let f1,..., fm be convex functions on R". Their infimal convolution, denoted
g = f1o--- o fm (several other notations are also used), is defined as

g(x) = inf{fi(x1) + -+ fi(Tm) | 21 + - + Ty = 2},

with the natural domain (i.e., defined by g(z) < c0). In one simple interpretation, f;(x;) is the cost
for the ith firm to produce a mix of products given by x;; g(x) is then the optimal cost obtained
if the firms can freely exchange products to produce, all together, the mix given by x. (The name
‘convolution’ presumably comes from the observation that if we replace the sum above with the
product, and the infimum above with integration, then we obtain the normal convolution.)

(a) Show that g is convex.

(b) Show that ¢* = f; +---+ f¥. In other words, the conjugate of the infimal convolution is the
sum of the conjugates.

Conjugate of composition of conver and linear function. Suppose A € R™*™ with rank A = m,
and g is defined as g(z) = f(Az), where f: R™ — R is convex. Show that

g (y) = f((ANTy),  dom(g*) = AT dom(f*),

where AT = (AAT)~1A is the pseudo-inverse of A. (This generalizes the formula given on page 95
for the case when A is square and invertible.)

[Roberts and Varberg] Suppose Ay, ..., \, are positive. Show that the function f: R" — R, given
by

n

f) =TI - e,

i=1

is concave on

domf:{azeRﬁJr

En:)\ie_xi < 1} .

i=1

Hint. The Hessian is given by

V2 f(z) = f(z)(yy" — diag(=))
where y; = \ie ™1 /(1 —e ™) and z; = y; /(1 — e ™).
Show that the following functions f : R" — R are convex.

(a) The difference between the maximum and minimum value of a polynomial on a given interval
[a, b], as a function of its coefficients:

f(x) = sup p(t) — inf p(t) where p(t) =x1+ xot + xgt? 4 - apt" L
te(a,b] t€(a,b]

11



(b)

()

The ‘exponential barrier’ of a set of inequalities:

m

fl@)=> e V@ dom f = {z||fi(x) <0, i=1,...,m}.
i=1
The functions f; are convex.

The function
. gy +ax) —g(y)
— inf
f@) = inf o

if g is convex and y € domg. (It can be shown that this is the directional derivative of g at
y in the direction x.)

3.21 Symmetric convex functions of eigenvalues. A function f : R™ — R is said to be symmetric if it is
invariant with respect to a permutation of its arguments, i.e., f(z) = f(Pxz) for any permutation
matrix P. An example of a symmetric function is f(z) = log(3_}_, exp xy).

In this problem we show that if f : R™ — R is conver and symmetric, then the function g : S - R
defined as g(X) = f(A(X)) is convex, where A(X) = (M (X), Aa(z), ..., A\ (X)) is the vector of
eigenvalues of X. This implies, for example, that the function

g(X) =logtreX = log Z M (X)
k=1

is convex on S".

(a)

A square matrix S is doubly stochastic if its elements are nonnegative and all row sums and
column sums are equal to one. It can be shown that every doubly stochastic matrix is a convex
combination of permutation matrices.

Show that if f is convex and symmetric and S is doubly stochastic, then
f(Sz) < f(=).

Let Y = Qdiag()\)QT be an eigenvalue decomposition of Y € 8™ with @ orthogonal. Show
that the n x n matrix S with elements S;; = Q?j is doubly stochastic and that diag(Y’) = SA.

Use the results in parts (a) and (b) to show that if f is convex and symmetric and X € S,
then
FIMX)) = sup f(diag(VTXV))
Vey
where V is the set of n x n orthogonal matrices. Show that this implies that f(A(X)) is convex
in X.

3.22 Convexity of nonsymmetric matriz fractional function. Consider the function f : R"*" x R" — R,
defined by

fXy)=y"X "y, domf={(X,y)|X+X" 0}

When this function is restricted to X € S™, it is convex.

Is f convex? If so, prove it. If not, give a (simple) counterexample.

12



3.23 Show that the following functions f : R™ — R are convex.

(a) f(z) = —exp(—g(x)) where g : R™ — R has a convex domain and satisfies

V2g(z) Vg(x)
Vg?a:)T 91 =0

for x € domg.

(b) The function
f(z) = max {||[APx — b|| | P is a permutation matrix}

with A € R™*™, b e R™.

3.24 Conver hull of functions. Suppose g and h are convex functions, bounded below, with domg =
dom h = R"™. The convex hull function of g and h is defined as

f(z)=inf{0g(y) + (1 —O0)h(z) |0y + (1 — )z =2, 0 <O <1},

where the infimum is over 6, y, z. Show that the convex hull of h and ¢ is convex. Describe epi f
in terms of epig and epih.

3.25 Show that a function f: R — R is convex if and only if dom f is convex and
det T Y z >0

for all z, y, z € dom f with z < y < z.

3.26 Generalization of the convezity of logdet X 1. Let P € R™ ™ have rank m. In this problem we
show that the function f:S" — R, with dom f =S’ |, and

f(X) =logdet(PTX1P)

is convex. To prove this, we assume (without loss of generality) that P has the form

P=lo]

where I. The matrix PT X~ P is then the leading m x m principal submatrix of X 1.

(a) Let Y and Z be symmetric matrices with 0 < Y < Z. Show that detY < det Z.

(b) Let X € 8%, partitioned as
¥ — [ X Xio }

XL Xo
with X1; € S™. Show that the optimization problem
minimize logdetY !
0 ] [ X1 X2 ]

Y
subject to
) [ XL, X

0 0

13



with variable Y € S, has the solution
Y = X151 — X129 X505 Xis.

(As usual, we take S, as the domain of logdet Y1)

Hint. Use the Schur complement characterization of positive definite block matrices (page 651
of the book): if C' > 0 then
A B
-
i o=

if and only if A — BC~'BT > 0.
(c) Combine the result in part (b) and the minimization property (page 3-19, lecture notes) to

show that the function

f(X) =logdet(X11 — X12Xo5 X15) 71,

with dom f = S’} |, is convex.

(d) Show that (X1; — X12 X5 X{5)~" is the leading m x m principal submatrix of X!, i.e.,

(X11 — X12X0n' Xip) 7t = PTXIP.

Hence, the convex function f defined in part (c) can also be expressed as f(X) = log det(PT X~ P).
Hint. Use the formula for the inverse of a symmetric block matrix:

-1 T
A B 0 0 -1 _ _ -1
P R T R P et ey
if C and A — BC~1BT are invertible.

3.27 Functions of a random wvariable with log-concave density. Suppose the random variable X on R"
has log-concave density, and let Y = g(X), where g : R — R.. For each of the following statements,
either give a counterexample, or show that the statement is true.

(a) If g is affine and not constant, then Y has log-concave density.
(b) If g is convex, then prob(Y < a) is a log-concave function of a.
(c) If g is concave, then E ((Y — a)4) is a convex and log-concave function of a. (This quantity is

called the tail expectation of Y; you can assume it exists. We define (s)+ as (s)+ = max{s,0}.)

3.28 Majorization. Define C' as the set of all permutations of a given n-vector a, i.e., the set of vectors
(Qry s Qryy - -y Qr, ) Where (71,72, ..., m,) is one of the n! permutations of (1,2,...,n).

a) The support function of C is defined as Sc(y) = maxzecc y’ x. Show that
(a)

Sc(y) = amyp + agy) + - + A
(uf1), upg)s - - -5 Upy) denote the components of an n-vector u in nonincreasing order.)
Hint. To find the maximum of y”x over = € C, write the inner product as

yIe = (y1 —y2)w1 + (Y2 — y3) (w1 + 22) + (y3 — ya) (21 + 2 + 23) + - -+
+ (yn—1 - yn)(331 + a9+ - _|_:17n_1) +yn(5171 + a9+ - +33n)

and assume that the components of y are sorted in nonincreasing order.

14



3.29

3.30

(b) Show that z satisfies 7y < Sc(y) for all y if and only if
sp(x) < sgla), k=1,...,n—1, sn(x) = sp(a),

where sy, denotes the function si(z) = x[) +xg) + -+ ). When these inequalities hold, we
say the vector a majorizes the vector x.

(¢) Conclude from this that the conjugate of S¢ is given by

0 if x is majorized by a
400 otherwise.

el = {

Since S¢ is the indicator function of the convex hull of C, this establishes the following result:
x is a convex combination of the permutations of a if and only if ¢ majorizes x.

Convezity of products of powers. This problem concerns the product of powers function f : R’} | —
R given by f(z) = 3:?1 a9 where # € R" is a vector of powers. We are interested in finding

values of 6 for which f is convex or concave. You already know a few, for example when n = 2 and
0 = (2,—1), f is convex (the quadratic-over-linear function), and when # = (1/n)1, f is concave
(geometric mean). Of course, if n = 1, f is convex when # > 1 or § < 0, and concave when
0<6<1.

Show each of the statements below. We will not read long or complicated proofs, or ones that
involve Hessians. We are looking for short, snappy ones, that (where possible) use composition
rules, perspective, partial minimization, or other operations, together with known convex or concave
functions, such as the ones listed in the previous paragraph. Feel free to use the results of earlier
statements in later ones.

(a) Whenn =2,6 >0, and 170 = 1, f is concave. (This function is called the weighted geometric
mean.)

(b) When @ = 0 and 170 = 1, f is concave. (This is the same as part (a), but here it is for general

When 0 > 0 and 176 < 1, f is concave.
When 0 <0, f is convex.
When 170 = 1 and exactly one of the elements of 6 is positive, f is convex.

When 176 > 1 and exactly one of the elements of 6 is positive, f is convex.

Remark. Parts (c), (d), and (f) exactly characterize the cases when f is either convex or concave.
That is, if none of these conditions on # hold, f is neither convex nor concave. Your teaching staff
has, however, kindly refrained from asking you to show this.

Huber penalty. The infimal convolution of two functions f and g on R" is defined as
h(z) = inf (f(y) + g(z — y))

(see exercise 3.17). Show that the infimal convolution of f(x) = ||z|; and g(z) = (1/2)||z|3, i.e.,
the function

() = nf (£() + 9(x — ) = inf (lylls + 52 = yIB),
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is the Huber penalty

u? /2 lu| <1

h(z) = ;(;5(332‘)7 P(u) = { lul —1/2 |ul > 1.

3.31 Suppose the function i : R — R is convex, nondecreasing, with domh = R, and h(t) = h(0) for
t<O0.
(a) Show that the function f(z) = h(||z||2) is convex on R".
(b) Show that the conjugate of f is f*(y) = h*(||yl|2)-

(c) As an example, derive the conjugate of f(z) = (1/p)||z||5 for p > 1, by applying the result of
part (b) with the function

14p
pt t>0

1
t) = —m P _—
h(t) 5 ax {0,t} { : t <0,

3.32 DCP rules. The function f(z,y) = —1/(zy) with dom f = R?  is concave. Briefly explain how to
represent it, using disciplined convex programming (DCP), limited to the atoms 1/u, \/uv, v/v, u?,
u? /v, addition, subtraction, and scalar multiplication. Justify any statement about the curvature,
monotonicity, or other properties of the functions you use. Assume these atoms take their usual
domains (e.g., /u has domain v > 0), and that DCP is sign-sensitive (e.g., u?/v is increasing in u
when u > 0).

3.33 DCP rules. The function f(z,y) = \/m, with dom f = R xR, 4, is convex. Use disciplined
convex programming (DCP) to express f so that it is DCP convex. You can use any of the following
atoms

inv_pos(u), which is 1/u, with domain R, 4

square (u), which is 2, with domain R

sqrt (u), which is y/u, with domain R

geo_mean (u,v), which is \/uv, with domain R
quad_over_lin(u,v), which is u?/v, with domain R x R
norm2 (u,v), which is vu2 + v2, with domain R2.

You may also use addition, subtraction, scalar multiplication, and any constant functions. Assume
that DCP is sign-sensitive, e.g., square(u) is known to be increasing in u for u > 0.

3.34 Conwvezity of some sets. Determine if each set is convex.

(a) {P e R | 2T Pxr >0 for all = 0}.
(

)
b) {(co,e1,c2) ER3 | co =1, |co+ it +eat?| < 1forall —1<t<1}.
(¢) {(u,v) € R?| cos(u+v) >2/2, u? +v* < 7w%/4}. Hint: cos(m/4) = v/2/2.
(d) {x € R" | 2T A~z > 0}, where A < 0.

3.35 Let f,g: R" — R and ¢ : R — R be given functions. Determine if each statement is true or false.
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(a) If f, g are convex, then h(x,y) = (f(x) + g(y))? is convex.
(b) If f, ¢ are convex, differentiable, and ¢’ > 0, then ¢(f(x)) is convex.
(c) If f,g are concave and positive, then \/f(z)g(z) is concave.

3.36 DCP compliance. Determine if each expression below is (sign-sensitive) DCP compliant, and if it
is, state whether it is affine, convex, or concave.

(a) sqrt(1 + 4 * square(x) + 16 * square(y))
(b) min(x, log(y)) - max(y, z)
(c) log(exp(2 * x + 3) + exp(4 * y + 5))
3.37 Clurvature of some functions. Determine the curvature of the functions below. Your responses can
be: affine, convex, concave, and none (meaning, neither convex nor concave).
(a) f(u,v) = uv, with dom f = R2.
(b) f(z,u,v) =log(v — 2Tz /u), with dom f = {(z,u,v) | uv > 27z, u > 0}.

(c) the ‘exponential barrier’ for a polyhedron,

- 1
fz) = ;exp (m) )

with dom f = {z | alx < b;, i =1,...,m}, and a; € R", b € R™.

3.38 Curvature of some functions. Determine the curvature of the functions below. Your responses can
be: affine, convex, concave, and none (meaning, neither convex nor concave).

(a) f
(b) f
(c) f
(d) f
(e) f(z,y) = (Va + ¥)? with dom f = R?

(f) f(0) =logdetf — tr(S0), with dom f = S" , , and where S -0

() = min{2, z, /z}, with dom f = R
(z) = 23, with dom f = R

(z) = 23, with dom f = R,

(

(

(

,y) = y/zmin{y, 2}, with dom f = R%

LY
T,y

3.39 Conwverity of some sets. Determine if each set below is convex.

eRL a/y<1}
eRL, az/y>1}
eRY |zy <1}
eRY | zy > 1}

9

(a
( ,
(c
(d

) {(2,9)
) {(z,9)
) {(z,9)
) {(z,9)

Y

3.40 Correlation matrices. Determine if the following subsets of S™ are convex.

(a) the set of correlation matrices, C" ={C € S} |Cy =1, i=1,...,n}

(b) the set of nonnegative correlation matrices, {C € C" | C;; >0, i,j =1,...,n}
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(c) the set of volume-constrained correlation matrices, {C € C" | det C' > (1/2)"}
(d) the set of highly correlated correlation matrices, {C € C" | C;; > 0.8, i,j =1,...,n}

3.41 CDF of the maximum of a vector random variable with log-concave density. Let X be an R"-valued
random variable, with log-concave probability density function p. Define the scalar random variable
Y = max; X;, which has cumulative distribution function ¢(a) = prob(Y < a). Determine whether
¢ must be a log-concave function, given only the assumptions above. If it must be log-concave, give
a brief justification. Otherwise, provide a (very) simple counterexample. (We will deduct points for
overly complicated solutions.) Please note. The coordinates X; need not be independent random
variables.

3.42 Fuel use as function of distance and speed. A vehicle uses fuel at a rate f(s), which is a function
of the vehicle speed s. We assume that f : R — R is a positive increasing convex function, with
dom f = R,. The physical units of s are m/s (meters per second), and the physical units of f(s)
are kg/s (kilograms per second).

(a) Let g(d,t) be the total fuel used (in kg) when the vehicle moves a distance d > 0 (in meters)
in time ¢ > 0 (in seconds) at a constant speed. Show that g is convex.

(b) Let h(d) be the minimum fuel used (in kg) to move a distance d (in m) at a constant speed s
(in m/s). Show that h is convex.

3.43 Inverse of product. The function f(z,y) = 1/(xy) with z,y € R, dom f = R%FJF, is convex. How do
we represent it using disciplined convex programming (DCP), and the functions 1/u, v/uv, \/u, u?,
u? /v, addition, subtraction, and scalar multiplication? (These functions have the obvious domains,
and you can assume a sign-sensitive version of DCP, e.g., u?/v increasing in u for u > 0.) Hint.
There are several ways to represent f using the atoms given above.

3.44 Let h : R®™ — R be a convex function, nondecreasing in each of its n arguments, and with
domain R™.

(a) Show that the function f(z) = h(|z1],...,|xs|) is convex.

(b) Suppose h has the property that A(u) = h((u1)+, ..., (uy)4) for all u, where (uy)+ = max {ug,0}.
Show that the conjugate of f(z) = h(|x1|,...,|x,]) is

) =h (il lynl)-

(c) As an example, take n = 1, h(u) = exp(u)4, and f(z) = exp |z|. Find the conjugates of h and
f, and verify that f*(y) = h*(|y|)-

3.45 Curvature of some functions. Determine the curvature of the functions below, among the choices
convex, concave, affine, or none (meaning, neither convex nor concave).

(a) f(z)=min{2,z,/z}, with dom f = R
(b) f(x) =23, withdom f = R

(c) f(x) =23, withdom f = R, |

(d) f(z,y) = \/m, with dom f = Ri
(e) f(z,y) = (Vz+ y)?* with dom f =R?
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3.46

3.47

(f) f(z)= [y g(t)dt, with domg =R, and g : R — R is decreasing

Curvature of some order statistics. For x € R", with n > 1, z) denotes the kth largest entry
of x, for k = 1,...,n, so, for example, T[) = MaXi=1_.n T and T[] = Minj=1 ;. Functions
that depend on these sorted values are called order statistics or order functions. Determine the
curvature of the order statistics below, from the choices convex, concave, or neither. For each
function, explain why the function has the curvature you claim. If you say it is neither convex nor
concave, give a counterexample showing it is not convex, and a counterexample showing it is not
concave. All functions below have domain R".

(a) median(z) = |(n41)/2)- (You can assume that n is odd.)

(b) The range of values, z[;] — z).

(c) The midpoint of the range, (z[;] + Z[,])/2.

(d) Interquartile range, defined as x4 — Z(3,,/4)- (You can assume that n/4 is an integer.)
(e) Symmetric trimmed mean, defined as

Z(n/10] t Zln/10+1] T T T[9n/10]
0.8n+1 ’

the mean of the values between the 10th and 90th percentiles. (You can assume that n/10 is
an integer.)

(f) Lower trimmed mean, defined as
U] + ] + o F Tgn/10)
0.9n +1 ’

the mean of the entries, excluding the bottom decile. (You can assume that n/10 is an integer.)

Remark. For the functions defined in (d)—(f), you might find slightly different definitions in the
literature. Please use the formulas above to answer each question.

A composition rule for log-log convex functions. A function f : R, — Ry is called log-log
convex if F(u) = log f(e") is convex, where the exponentiation is applied elementwise. Similarly,
f is log-log concave if F' is concave, and it is log-log affine if F' is affine. For example, posynomials
are log-log convex and monomials are log-log affine.

It turns that log-log convex functions obey a composition rule, analogous to the one for convex
functions. Suppose

f(z) = h(g1(x), g2(x), ..., gr(z)),

where h : Ri + — Ry is log-log convex, and g; : R, — Ry . Suppose that for each i, one of
the following holds:

e h is nondecreasing in the ith argument, and g; is log-log convex,
e h is nonincreasing in the ith argument, and g; is log-log concave,

e g; is log-log affine.

Show that f is log-log convex. (This composition rule is the basis of disciplined geometric program-
ming, which is implemented in CVXPY.)
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3.48 Explain why the following functions are convex. In each problem, x is an n-vector.

(a) f(x) = cosh(||z||) where cosh(u) = (exp(u) + exp(—u))/2 and || - || is a norm on R".
(b) f(z) = (27 Azx)/g(z), where A is positive definite, and g is concave and positive on dom g.

(¢) f(z) =1inf{|ly|1 | Ay = =}, where A is an n X m matrix.

3.49 Symmetric conver matriz functions. We call a function f : R"™ — R symmetric if f(x) = f(Px)
for all permutation matrices P, i.e., matrices P that satisfy P € {0,1}"*", P1 =1, and P71 =1.
We call a function f : 8™ — R unitarily invariant if for all orthogonal Q@ € R™", i.e., QTQ = I,
we have f(X) = f(QXQT). For a matrix X € S”, let A\(X) € R" be the vector of its eigenvalues.
In this exercise you will prove the following result: if F': S™ — R is convex and unitarily invariant,
there is a symmetric f : R" — R such that F(X) = f(A(X)). Conversely, if f : R" — R is
symmetric and convex, then the function F(X) = f(A(X)) is convex and unitarily invariant. (See
also Exercise 3.21 for a different proof.)

(a) Show that F': S™ — R is unitarily invariant if and only if there exists a symmetric f : R" — R
such that F(X) = f(A(X)).

(b) For any symmetric function g : R" — R, define the matricization g5 (X) = g(A(X)). Let
f:R™ — R be convex and symmetric. Use the result of Exercise 12.3 (Von Neumann’s trace
inequality) to show that the convex conjugate of fi, is the matricization of f*, that is,

fo(Y) = Sl}l{p{tr(XY) — oy (X) [ X € 8"} = (f)sy (V).

(c) Use the result of exercise 3.39(d) in the book to show that if f : R" — R is closed convex and
symmetric, then fq (X) = f(A(X)) is also closed convex and unitarily invariant.

(d) Show that if F': S — R is closed convex and unitarily invariant, then F/(X) = f(A(X)) for
some symmetric convex f. Hint. This is the easy part. Consider diagonal matrices.

(e) A subgradient of a convex function f : R™ — R at the point z € dom f is a vector g € R"
such that f(y) > f(x) + ¢”(y — x) for all y € R™. Show that if f is symmetric and convex,
then

fy(Y) =2 fo(X) + tr(G(Y — X))

for all matrices G € S™ of the form G = U diag(g)U”, where g € 0f(x) and X = U diag(z)U”.
That is, the subgradients of f determine the subgradients of fiy.

3.50 Functions of the eigenvaleus of symmetric matrices. Use the results of exercise 3.21 or 3.49 to give
one-line proofs of the following.

The maximum eigenvalue A\;(X) is convex in X € S".
The minimum eigenvalue A, (X) is concave in X € S™.

The trace inverse tr(X ') is convex on S .

)
)
)
(d) The geometric mean (det X)'/™ is concave on S’} . (See page 74 of the book.)
) The log determinant log det X is concave on S’ .

)

The sum of the k-largest eigenvalues Zle Ai(X) is convex in X € S"™.
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(g) All Ky-Fan p-norms, defined by the usual p > 1-norm on the eigenvalues || X|| = |[A(X)]|,, are
convex in X.

3.51 Prove that the following functions are convex.

(a) The function f: R™ — R defined by
fl@) = =(Var +---+@)?,  domf=R}..
(b) The function f:S"™ — R defined by
f(X) =log(aT X a), dom f =87,

where a is a nonzero n-vector.

Hint. Show that f(X) is the optimal value of the following optimization problem with scalar
variable y:

minimize —logy

subject to  yaal < X.

(¢) The function f:S"™ — R defined by

)\1(X)a+1

f(X):W7

dom f =S% ,,

for a > 0, where A;(X) is the largest eigenvalue of X and A, (X) the smallest eigenvalue.

Hint. Show that the epigraph of f is a convex set. Note that f(X) <t if and only if X > 0,
t >0, and A (X)Lt < A\, (X)“.

3.52 Functions of a log-concave scalar random variable. Suppose the random variable X defined on R4
has a log-concave and decreasing density px.

(a) Square root. Let Y = +/X. Does Y have a log-concave density? Either show that it does,
or give a counter-example, i.e., a specific log-concave decreasing density for X for which the
density of Y is not log-concave.

(b) Square. Let Z = X?. Does Z have a log-concave density? Either show that it does, or give a
counter-example, i.e., a specific log-concave decreasing density for X for which the density of
Z is not log-concave.

3.53 Clurvature of functions. Are the following functions affine, convex, concave, quasi-convex, quasi-
linear, or none of these?

(a) f(z)=max(1/2,x,z?).
(b) f(x) = min(1/2,z,2?%).

3.54 Square and reciprocal of conver and concave functions. For each of the following, determine if the
function f is convex, concave, or neither.

(a) f(z) = g(x)?, where g is convex and nonnegative.

(b) f(z) =1/g(x), where g is concave and positive.
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3.55

3.56

3.57

3.58

3.59

State whether each of the following statements is true or false.
(a) f(z) = (2% +2)/(z +2), with dom f = (—o0, —2) is convex.
(b) f(x) =1/(1 — 2?), with domf = (—1,1) is convex.

(c) f(z)=1/(1 —2?), with domf = (—1,1) is log-convex.
(d) f(z) =cosha = (e + e %)/2 is convex.

(e) f(x) = coshzx is log-concave.

(f) f(z) = coshz is log-convex.

For z € R", we define f(z) = min{k | Zle\xz\ > 1}, with f(z) = co if Y i Jay| < 1. Is f
quasiconvex, quasiconcave, both, or neither?

Conjugate of the positive part function. Let f(x) = (x); = max{0,z} for x € R. (This function
has various names, such as the positive part of z, or ReLU for Rectified Linear Unit in the context
of neural networks.) What is f*?

Leverage limit. Let w € R™, with 17w = 1, denote the set of weights for a portfolio of n investments,
with w; the fraction of the total portfolio value (assumed to be positive) invested in asset i. When
w; < 0, it means we hold a short position in asset ¢; when w; > 0, we hold a long position in asset
i. (You do not need to know what these mean.)

The total long weight and total short weight are defined as
L=1"(w); = Zmax{o,wi}, S=1"(w)_ = Zmax{o, —w; },
i=1 i=1

respectively. A leverage limit is a constraint of the form S < nL, where n € [0,1) is a parameter. Is
a leverage limit constraint convex (i.e., is the set of weights that satisfy it convex)? If so, explain.
If not, give a specific counter-example. Hint. L — S = 1.

Distances between finite probability distributions. We describe a probability distribution on n out-
comes as a vector p € R’} with 17p = 1. Suppose p and g are two such probability distributions.
There are several ways to define a distance or deviation d(p,q) between p and ¢q. Show that each
of the metrics below is a convex function of (p, q).

(a) Maz difference in probability. We take
d™(p, q) = max{| prob(S;p) — prob(S;q)| | S € {1,...,n}},

where prob(S;p) is the probability of the event S under the distribution p, i.e., prob(S;p) =
Y icgPi- In addition to showing that d™P is convex, express it in a simple explicit form
involving a norm of p — q.

(b) Hellinger distance. The Hellinger distance is defined as

n

dho(p, q) = Z(\/_z - \/52)2

1=1
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Remark. There are many others, for example the usual ¢o-norm ||p — ¢||2 or the Kullback-Leibler
divergence

d%(p,q) =Y _pilog(pi/a:),
i=1

which are also convex in (p, q). (See Convex Optimization, Example 3.19.)

23



4.1

4.2

4.3

4.4

4.5

4 Convex optimization problems

Minimizing a function over the probability simplex. Find simple necessary and sufficient conditions
for z € R" to minimize a differentiable convex function f over the probability simplex {z | 17z =
1, z = 0}.

‘Hello World’ in CVX*. Use CVXPY, Convex.jl, or CVX to verify the optimal values you obtained
(analytically) for exercise 4.1 in Convex Optimization.

Formulating constraints in CVX*. Below we give several convex constraints on scalar variables z,
y, and z. Express each one as a set of valid constraints in CVX*. (Directly expressing them in
CVX* will lead to invalid constraints.) You can also introduce additional variables, if needed.

Check your reformulations by creating a small problem that includes these constraints, and solving
it using CVX*. Your test problem doesn’t have to be feasible; it’s enough to verify that CVX*
processes your constraints without error.

(@) 1/z+1/y<1,2>0,y>0.

(b) zy>1,2>0,y > 0.

(¢) (z+y)?/\/y<z—y+5 (with implicit constraint y > 0).
(d) z+2<14+ oy —22, >0,y >0.

Optimal activity levels. Solve the optimal activity level problem described in exercise 4.17 in Convez
Optimization, for the instance with problem data

120 1 100
0031 100 2 : i 1%)
A=103 1 1], ™=]100]|, p=|_|, pise = Al 1=
212 5 100 6 5 10
103 2 100

You can do this by forming the LP you found in your solution of exercise 4.17, or more directly,
using CVX*. Give the optimal activity levels, the revenue generated by each one, and the total
revenue generated by the optimal solution. Also, give the average price per unit for each activity
level, i.e., the ratio of the revenue associated with an activity, to the activity level. (These numbers
should be between the basic and discounted prices for each activity.) Give a very brief story
explaining, or at least commenting on, the solution you find.

Minimizing the ratio of convex and concave piecewise-linear functions. We consider the problem

maxizl,...7m(a?:ﬂ +b;)

minimize - T
min;—; __,(¢; x + d;)

subject to Fx < g,
with variable z € R"™. We assume that CZT:L'—I-di > (0 and maxizl,...7m(a§p:n+bi) > 0 for all = satisfying
Fz < g, and that the feasible set is nonempty and bounded. This problem is quasiconvex, and can

be solved using bisection, with each iteration involving a feasibility LP. Show how the problem can
be solved by solving one LP, using a trick similar to one described in §4.3.2.
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4.6

4.7

4.8

Two problems involving two norms. We consider the problem

o [[Az = b
minimize ———, 1
I Tl 0
and the very closely related problem
o | Az — b||?
minimize ——————. 2
Ty @

In both problems, the variable is x € R", and the data are A € R"*™ and b € R™. Note that
the only difference between problem (1) and (2) is the square in the numerator. In both problems,
the constraint ||z||s < 1 is implicit. You can assume that b ¢ R(A), in which case the constraint
|z]|co < 1 can be replaced with ||zl < 1.

Answer the following two questions, for each of the two problems. (So you will answer four questions
all together.)

(a) Is the problem, exactly as stated (and for all problem data), convex? If not, is it quasiconvex?
Justify your answer.

(b) Explain how to solve the problem. Your method can involve an SDP solver, an SOCP solver,
an LP solver, or any combination. You can include a one-parameter bisection, if necessary.
(For example, you can solve the problem by bisection on a parameter, where each iteration
consists of solving an SOCP feasibility problem.)

Give the best method you can. In judging best, we use the following rules:

e Bisection methods are worse than ‘one-shot’ methods. Any method that solves the problem
above by solving one LP, SOCP, or SDP problem is better than any method that uses a
one-parameter bisection. In other words, use a bisection method only if you cannot find
a ‘one-shot’ method.

o Use the simplest solver needed to solve the problem. We consider an LP solver to be
simpler than an SOCP solver, which is considered simpler than an SDP solver. Thus, a
method that uses an LP solver is better than a method that uses an SOCP solver, which
in turn is better than a method that uses an SDP solver.

The illumination problem. In lecture 1 we encountered the function

f(p) = max |logalp—log Iyl

i=1,...n

where a; € R™, and I4cs > 0 are given, and p € R

(a) Show that exp f is convex on {p | alp >0, i=1,...,n }.

(b) Show that the constraint ‘no more than half of the total power is in any 10 lamps’ is convex
(i.e., the set of vectors p that satisfy the constraint is convex).

(c) Show that the constraint ‘no more than half of the lamps are on’ is (in general) not convex.

Schur complements and LMI representation. Recognizing Schur complements (see §A5.5) often
helps to represent nonlinear convex constraints as linear matrix inequalities (LMIs). Consider the
function

f(z) = (Az + b)T(PO +x1P 4+ ann)_l(Ax +b)
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4.9

4.10

where A € R™*" b€ R™, and P, = P € R™*™, with domain
domf={xeR"|Ph+x1P 1+ - +z,P, = 0}.

This is the composition of the matrix fractional function and an affine mapping, and so is convex.
Give an LMI representation of epi f. That is, find a symmetric matrix F(z,t), affine in (z,t), for
which

redomf, f(x)<t — F(x,t) = 0.

Remark. LMI representations, such as the one you found in this exercise, can be directly used in
CVX*,

Complex least-norm problem. We consider the complex least £,-norm problem

minimize ||z,
subject to Ax = b,

where A € C"™*", b € C™, and the variable is z € C". Here || - ||, denotes the ¢,-norm on C",

defined as
n 1/17
lzll, = (Z Iivz'l”)
i=1

for p > 1, and ||z o = max;=1, _n |z;|. We assume A is full rank, and m < n.

(a) Formulate the complex least ¢o-norm problem as a least ¢3-norm problem with real problem
data and variable. Hint. Use z = (Rz, 3z) € R®" as the variable.

(b) Formulate the complex least {o-norm problem as an SOCP.

(¢) Solve a random instance of both problems with m = 30 and n = 100. To generate the
matrix A, you can use the Matlab command A = randn(m,n) + i*randn(m,n). Similarly,
use b = randn(m,1) + i*randn(m,1) to generate the vector b. Use the Matlab command
scatter to plot the optimal solutions of the two problems on the complex plane, and comment
(briefly) on what you observe. You can solve the problems using the CVX functions norm(x,2)
and norm(x,inf), which are overloaded to handle complex arguments. To utilize this feature,
you will need to declare variables to be complex in the variable statement. (In particular,
you do not have to manually form or solve the SOCP from part (b).)

Linear programming with random cost vector. We consider the linear program

minimize Lz

subject to Ax < b.

Here, however, the cost vector c¢ is random, normally distributed with mean E ¢ = ¢y and covariance
E(c— co)(c—co)T =X. (A, b, and z are deterministic.) Thus, for a given z € R", the cost ¢! is
a (scalar) Gaussian variable.

T

We can attach several different meanings to the goal ‘minimize ¢* z’; we explore some of these

below.

(a) How would you minimize the expected cost E ¢’z subject to Az < b?
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(b) In general there is a tradeoff between small expected cost and small cost variance. One way
to take variance into account is to minimize a linear combination

Ecl'z +yvar(cz) (3)

of the expected value E ¢’z and the variance var(c’z) = E(c’z)? — (Ec’z)2. This is called
the ‘risk-sensitive cost’, and the parameter v > 0 is called the risk-aversion parameter, since
it sets the relative values of cost variance and expected value. (For v > 0, we are willing to
tradeoff an increase in expected cost for a decrease in cost variance.) How would you minimize
the risk-sensitive cost? Is this problem a convex optimization problem? Be as specific as you
can.

(c) We can also minimize the risk-sensitive cost, but with v < 0. This is called ‘risk-seeking’. Is
this problem a convex optimization problem?

(d) Another way to deal with the randomness in the cost ¢’z is to formulate the problem as
minimize f
subject to prob(c’z > p) < «
Ax < b.

Here, « is a fixed parameter, which corresponds roughly to the reliability we require, and
might typically have a value of 0.01. Is this problem a convex optimization problem? Be as
specific as you can. Can you obtain risk-seeking by choice of a? Explain.

4.11 Formulate the following optimization problems as semidefinite programs. The variable is z € R";
F(x) is defined as
F(ﬂj‘) =Fy+x1Fy +ax9lo+ -+, F,

with F; € S™. The domain of f in each subproblem is dom f = {z € R" | F(x) = 0}.

(a) Minimize f(z) = ¢! F(x)~'c where c € R™.
(b) Minimize f(z) = max;=1, K CZTF(ZL')_ch‘ where ¢; e R™, i =1,..., K.

(¢) Minimize f(z) = sup ¢! F(z) e
llefl2<1

(d) Minimize f(z) = E(c” F(z)~'¢c) where c is a random vector with mean E ¢ = ¢ and covariance
E(c—¢)(c—o)T =65.

4.12 A matriz fractional function [Ando]. Show that X = BT A~1B solves the SDP

minimize trX

. A B
subject to [ BT ¥ } =0,

with variable X € S", where A € 8", and B € R™*" are given.
Conclude that tr(BT A~!'B) is a convex function of (A, B), for A positive definite.
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Trace of harmonic mean of matrices [Ando]. The matrix H(A, B) = 2(A~! + B~1)~1 is known as
the harmonic mean of positive definite matrices A and B. Show that X = (1/2)H (A, B) solves the
SDP

maximize trX

. X X A 0
subject to [X X}j[o B]’

with variable X € S8". The matrices A € S}, and B € S/, are given. Conclude that the function
tr (A~' + B~1)~1), with domain 8%, x S, is concave.

Hint. Verify that the matrix
R [ A7V T }

B~t —I

is nonsingular. Then apply the congruence transformation defined by R to the two sides of matrix
inequality in the SDP, to obtain an equivalent inequality

X X s A 0
R[XXRjR 05| R

Trace of geometric mean of matrices [Ando].
G(A, B) = AY? <A—1/2BA—1/2>1/2 A1/2

is known as the geometric mean of positive definite matrices A and B. Show that X = G(4, B)

solves the SDP
maximize trX

. A X
subject to [X B ] > 0.

The variable is X € S". The matrices A € S’} , and B € S} | are given.
Conclude that the function tr G(A4, B) is concave, for A, B positive definite.

Hint. The symmetric matrix square root is monotone: if U and V are positive semidefinite with
U <V then UY2 < V1/2,

Transforming a standard form convex problem to conic form. In this problem we show that any
convex problem can be cast in conic form, provided some technical conditions hold. We start with
a standard form convex problem with linear objective (without loss of generality):

minimize Lz

subject to  fi(x) <0, i=1,...,m,
Ax = b,

where f; : R" — R are convex, and x € R" is the variable. For simplicity, we will assume that
dom f; = R" for each i.
Now introduce a new scalar variable ¢ € R and form the convex problem

minimize ¢’z

subject to tfi(x/t) <0, i=1,...,m,

Ar=b, t=1.
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Define
K =cl{(z,t) e R"™ | tf;(x/t) <0, i=1,...,m, t > 0}.

Then our original problem can be expressed as

minimize ¢’z
subject to (z,t) € K,
Ar=b, t=1.

This is a conic problem when K is proper.

You will relate some properties of the original problem to K.

(a) Show that K is a convex cone. (It is closed by definition, since we take the closure.)

(b) Suppose the original problem is strictly feasible, i.e., there exists a point & with f;(z) < 0,
i=1,...,m. (This is called Slater’s condition.) Show that K has nonempty interior.

(c) Suppose that the inequalities define a bounded set, i.e., {z | fi(x) < 0, ¢ = 1,...,m} is
bounded. Show that K is pointed.

Ezxploring nearly optimal points. An optimization algorithm will find an optimal point for a problem,
provided the problem is feasible. It is often useful to explore the set of nearly optimal points. When
a problem has a ‘strong minimum’, the set of nearly optimal points is small; all such points are close
to the original optimal point found. At the other extreme, a problem can have a ‘soft minimum’,
which means that there are many points, some quite far from the original optimal point found, that
are feasible and have nearly optimal objective value. In this problem you will use a typical method
to explore the set of nearly optimal points.

We start by finding the optimal value p* of the given problem

minimize  fo(x)
subject to  fi(x) <

as well as an optimal point * € R™. We then pick a small positive number €, and a vector ¢ € R",
and solve the problem

minimize c¢Lx

subject to  fi(z) <0, i=1,....,m
hi(x) =0, i=1,...,p
fo(z) <p* +

Note that any feasible point for this problem is e-suboptimal for the original problem. Solving this
problem multiple times, with different ¢’s, will generate (perhaps different) e-suboptimal points. If
the problem has a strong minimum, these points will all be close to each other; if the problem has
a weak minimum, they can be quite different.

There are different strategies for choosing ¢ in these experiments. The simplest is to choose the
¢’s randomly; another method is to choose ¢ to have the form =+e;, for i = 1,...,n. (This method
gives the ‘range’ of each component of x, over the e-suboptimal set.)
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You will carry out this method for the following problem, to determine whether it has a strong
minimum or a weak minimum. You can generate the vectors ¢ randomly, with enough samples for
you to come to your conclusion. You can pick € = 0.01p*, which means that we are considering the
set of 1% suboptimal points.

The problem is a minimum fuel optimal control problem for a vehicle moving in R?. The position
at time kh is given by p(k) € R?, and the velocity by v(k) € R?, for k = 1,...,K. Here h > 0 is
the sampling period. These are related by the equations

p(k+1) =p(k)+ hv(k), vk+1)=(1—-a)vk)+ (h/m)f(k), k=1,...,K—1,

where f(k) € R? is the force applied to the vehicle at time kh, m > 0 is the vehicle mass, and
a € (0,1) models drag on the vehicle; in the absense of any other force, the vehicle velocity decreases
by the factor 1 — « in each discretized time interval. (These formulas are approximations of more
accurate formulas that involve matrix exponentials.)

The force comes from two thrusters, and from gravity:

f(k:):[cosel]ul(k‘)—i—{cos%}ug(k)—i—[ 0 } k=1, K—1.

sin 64 sin 69 —mg

Here u1(k) € R and ug(k) € R are the (nonnegative) thruster force magnitudes, #; and 65 are the
directions of the thrust forces, and g = 10 is the constant acceleration due to gravity.

The total fuel use is
K-1

F = (ul(k:) + ’ng(k’)) .
k=1
(Recall that uy (k) > 0, ug(k) > 0.)
The problem is to minimize fuel use subject to the initial condition p(1) = 0, v(1) = 0, and the

way-point constraints
p(k:i):wi, ’iZl,...,M.

(These state that at the time hk;, the vehicle must pass through the location w; € R2.) In addition,
we require that the vehicle should remain in a square operating region,

[p(k)lso < P, k=1,...,K.

Both parts of this problem concern the specific problem instance with data given in thrusters_data. *.

(a) Find an optimal trajectory, and the associated minimum fuel use p*. Plot the trajectory p(k)
in R? (i.e., in the py, po plane). Verify that it passes through the way-points.
(b) Generate several 1% suboptimal trajectories using the general method described above, and

plot the associated trajectories in R?. Would you say this problem has a strong minimum, or
a weak minimum?

Minimum fuel optimal control. Solve the minimum fuel optimal control problem described in
exercise 4.16 of Convex Optimization, for the instance with problem data

-1 04 08 1 7
A= 1 0 0], b=| 0|, zas=| 2|, N=30
0 1 0 0.3 —6
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You can do this by forming the LP you found in your solution of exercise 4.16, or more directly
using CVX*. Plot the actuator signal u(t) as a function of time ¢.

Heuristic suboptimal solution for Boolean LP. This exercise builds on exercises 4.15 and 5.13 in
Conver Optimization, which involve the Boolean LP

minimize Lz
subject to Az <b

z;€{0,1}, i=1,...,n,

rlx

with optimal value p*. Let "* be a solution of the LP relaxation

minimize ¢’z
subject to Ax <b

0=<z=x1,

1

so L = ¢z is a lower bound on p*. The relaxed solution 2" can also be used to guess a Boolean

point Z, by rounding its entries, based on a threshold ¢ € [0, 1]:

. 1 :Eglx >t
Tl 0 otherwise,
for i =1,...,n. Evidently & is Boolean (i.e., has entries in {0, 1}). If it is feasible for the Boolean

LP, i.e., if Az < b, then it can be considered a guess at a good, if not optimal, point for the Boolean
LP. Its objective value, U = ¢!z, is an upper bound on p*. If U and L are close, then Z is nearly
optimal; specifically, & cannot be more than (U — L)-suboptimal for the Boolean LP.

This rounding need not work; indeed, it can happen that for all threshold values, % is infeasible.
But for some problem instances, it can work well.

Of course, there are many variations on this simple scheme for (possibly) constructing a feasible,

good point from z'¥.

Finally, we get to the problem. Generate problem data using one of the following.
Matlab code:

rand(’state’,0);
n=100;

m=300;

A=rand (m,n) ;
b=A*ones(n,1)/2;
c=-rand(n,1);

Python code:

import numpy as np

np.random.seed (0)

(m, n) = (300, 100)

A = np.random.rand(m, n); A = np.asmatrix(A)

b = A.dot(np.ones((n, 1)))/2; b = np.asmatrix(b)
¢ = -np.random.rand(n, 1); c = np.asmatrix(c)
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Julia code:

srand (0) ;

n=100;

m=300;
A=rand(m,n);
b=A*ones(n,1)/2;
c=-rand(n,1);

You can think of z; as a job we either accept or decline, and —¢; as the (positive) revenue we
generate if we accept job i. We can think of Az < b as a set of limits on m resources. A;;, which
is positive, is the amount of resource ¢ consumed if we accept job j; b;, which is positive, is the
amount of resource 4 available.

Find a solution of the relaxed LP and examine its entries. Note the associated lower bound L.
Carry out threshold rounding for (say) 100 values of ¢, uniformly spaced over [0, 1]. For each value
of t, note the objective value ¢’# and the maximum constraint violation max;(Az — b);. Plot the
objective value and the maximum violation versus t. Be sure to indicate on the plot the values of
t for which 7 is feasible, and those for which it is not.

Find a value of t for which Z is feasible, and gives minimum objective value, and note the associated
upper bound U. Give the gap U — L between the upper bound on p* and the lower bound on p*.

In Matlab, if you define vectors obj and maxviol, you can find the upper bound as
|U=min (obj (find (maxviol<=0))) |

4.19 Optimal operation of a hybrid vehicle. Solve the instance of the hybrid vehicle operation problem de-
scribed in exercise 4.65 in Convex Optimization, with problem data given in the file hybrid_veh_data. *,
and fuel use function F(p) = p + vp? (for p > 0).

Hint. You will actually formulate and solve a relaxzation of the original problem. You may find that
some of the equality constraints you relaxed to inequality constraints do not hold for the solution
found. This is not an error: it just means that there is no incentive (in terms of the objective) for
the inequality to be tight. You can fix this in (at least) two ways. One is to go back and adjust
certain variables, without affecting the objective and maintaining feasibility, so that the relaxed
constraints hold with equality. Another simple method is to add to the objective a term of the
form

T
¢y max{0, —Pug(t)},
t=1

where € is small and positive. This makes it more attractive to use the brakes to extract power
from the wheels, even when the battery is (or will be) full (which removes any fuel incentive).

Find the optimal fuel consumption, and compare to the fuel consumption with a non-hybrid ver-
sion of the same vehicle (i.e., one without a battery). Plot the braking power, engine power,
motor/generator power, and battery energy versus time.

How would you use optimal dual variables for this problem to find 0Fiota1/0E sy, i.¢€., the partial

derivative of optimal fuel consumption with respect to battery capacity? (You can just assume
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that this partial derivative exists.) You do not have to give a long derivation or proof; you can
just state how you would find this derivative from optimal dual variables for the problem. Verify
your method numerically, by changing the battery capacity a small amount and re-running the
optimization, and comparing this to the prediction made using dual variables.

Optimal vehicle speed scheduling. A vehicle (say, an airplane) travels along a fixed path of n
segments, between n + 1 waypoints labeled 0,...,n. Segment i starts at waypoint ¢ — 1 and
terminates at waypoint ¢. The vehicle starts at time ¢ = 0 at waypoint 0. It travels over each
segment at a constant (nonnegative) speed; s; is the speed on segment i. We have lower and upper
limits on the speeds: s™" < s < s™2  The vehicle does not stop at the waypoints; it simply
proceeds to the next segment. The travel distance of segment i is d; (which is positive), so the
travel time over segment i is d;/s;. We let 7, i = 1,...,n, denote the time at which the vehicle
arrives at waypoint 7. The vehicle is required to arrive at waypoint i, for ¢ = 1,...,n, between
times 7% and 78 which are given. The vehicle consumes fuel over segment i at a rate that
depends on its speed, ®(s;), where ® is positive, increasing, and convex, and has units of kg/s.

max max

You are given the data d (segment travel distances), s™" and s™* (speed bounds), 7 and 7
(waypoint arrival time bounds), and the fuel use function ® : R — R. You are to choose the speeds
$1,--.,8p SO as to minimize the total fuel consumed in kg.

(a) Show how to pose this as a convex optimization problem. If you introduce new variables, or
change variables, you must explain how to recover the optimal speeds from the solution of
your problem. If convexity of the objective or any constraint function in your formulation is
not obvious, explain why it is convex.

(b) Carry out the method of part (a) on the problem instance with data in
veh_speed_sched_data.m. Use the fuel use function ®(s;) = as? + bs; + ¢ (the parameters
a, b, and c are defined in the data file). What is the optimal fuel consumption? Plot the
optimal speed versus segment, using the matlab command stairs or the function step from
matplotlib in Python and Julia to better show constant speed over the segments.

Norm approzimation via SOCP, for {,-norms with rational p.

(a) Use the observation at the beginning of exercise 4.26 in Convex Optimization to express the
constraint

ygvzlz2, Y, 21,22 207

with variables y, z1, 22, as a second-order cone constraint. Then extend your result to the
constraint
) é (25122 e zn)l/n7 Yy 2 07 z t 07

where n is a positive integer, and the variables are y € R and z € R™. First assume that n is
a power of two, and then generalize your formulation to arbitrary positive integers.

(b) Express the constraint

flx) <t
as a second-order cone constraint, for the following two convex functions f:
¢ >0
x) = -
/(@) { 0 x<0,
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where « is rational and greater than or equal to one, and
f(z) =z, dom f =R,

where « is rational and negative.

(¢) Formulate the norm approximation problem
minimize ||Az — bl|,

as a second-order cone program, where p is a rational number greater than or equal to one.
The variable in the optimization problem is z € R™. The matrix A € R"*" and the vector
b € R™ are given. For an m-vector y, the norm ||y||, is defined as

m l/p
lylly = <Z !yk\”>
k=1

when p > 1.

Linear optimization over the complement of a convexr set. Suppose C C R/l is a closed bounded
convex set with 0 € C, and ¢ € R’y. We define

C=cl(R}L\C)=cl{z € R} |z ¢C},

which is the closure of the complement of C in R'}.

Show that ¢’z has a minimizer over C of the form aep, where @ > 0 and ey is the kth standard
unit vector. (If you have not had a course on analysis, you can give an intuitive argument.)

If follows that we can minimize ¢!z over C by solving n one-dimensional optimization problems

(which, indeed, can each be solved by bisection, provided we can check whether a point is in C or
not).

Jensen’s inequality for posynomials. Suppose f : R" — R is a posynomial function, z, y € R’ ,,
and 0 € [0,1]. Define z € R} by 2 = a:?yil_g, i=1,...,n. Show that f(z) < f(x)?f(y)'~?.

Interpretation. We can think of z as a f-weighted geometric mean between x and y. So the
statement above is that a posynomial, evaluated at a weighted geometric mean of two points, is no
more than the weighted geometric mean of the posynomial evaluated at the two points.

CVX implementation of a concave function. Consider the concave function f: R — R defined by

z+1)/2 x>1
fay={ G

with dom f = Ry. Give a CVX implementation of f, via a partially specified optimization problem.
Check your implementation by maximizing f(z) + f(a — ) for several interesting values of a (say,
a=-1,a=1,and a = 3).
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The following optimization problem arises in portfolio optimization:

rToe+d
| Rz + ql|2

subject to Y fi(zi) <b
i=1

maximize

x> c.

The variable is x € R"™. The functions f; are defined as

filx) = aimi + Bilas| + vilai/?,

with 8; > ||, 7; > 0. We assume there exists a feasible z with 7z +d > 0.

Show that this problem can be solved by solving an SOCP (if possible) or a sequence of SOCP
feasibility problems (otherwise).

Positive nonconver QCQP. We consider a (possibly nonconvex) QCQP, with nonnegative variable
r € R",
minimize  fo(x)
subject to  fi(x) <0, i=1,...,m
x =0,

where fi(z) = (1/2)2T P + ¢l + r;, with P, € S, ¢; € R", and r; € R, for i = 0,...,m. We do
not assume that P; > 0, so this need not be a convex problem.

Suppose that ¢; < 0, and P; have nonpositive off-diagonal entries, i.e., they satisfy

(R«)]kéov ]#ky j,k‘:L,n,

for i = 0,...,m. (A matrix with nonpositive off-diagonal entries is called a Z-matriz.) Explain
how to reformulate this problem as a convex problem.

Hint. Change variables using y; = ¢(x;), for some suitable function ¢.

Affine policy. We consider a family of LPs, parametrized by the random variable w, which is
uniformly distributed on U = [—1, 1]P,

minimize Lz

subject to Az < b(u),

where z € R", A € R"™ ", and b(u) = by + Bu € R™ is an affine function of u. You can think of
u; as representing a deviation of the ith parameter from its nominal value. The parameters might
represent (deviations in) levels of resources available, or other varying limits.

The problem is to be solved many times; in each time, the value of u (i.e., a sample) is given, and
then the decision variable z is chosen. The mapping from u into the decision variable x(u) is called
the policy, since it gives the decision variable value for each value of u. When enough time and
computing hardware is available, we can simply solve the LP for each new value of wu; this is an
optimal policy, which we denote z*(u).

In some applications, however, the decision z(u) must be made very quickly, so solving the LP is
not an option. Instead we seek a suboptimal policy, which is affine: xaﬂ(u) = xg + Ku, where zg is

35



called the nominal decision and K € R™*P is called the feedback gain matriz. (Roughly speaking,
xq is our guess of x before the value of u has been revealed; Ku is our modification of this guess,
once we know u.) We determine the policy (i.e., suitable values for zp and K) ahead of time; we
can then evaluate the policy (that is, find 22 (u) given ) very quickly, by matrix multiplication
and addition.

We will choose g and K in order to minimize the expected value of the objective, while insisting
that for any value of u, feasibility is maintained:

minimize E Tz (u)
subject to Az (u) < b(u) VYu € U.

The variables here are xy and K. The expectation in the objective is over u, and the constraint
requires that Az (u) < b(u) hold almost surely.

(a) Explain how to find optimal values of zy and K by solving a standard explicit convex op-
timization problem (i.e., one that does not involve an expectation or an infinite number of
constraints, as the one above does.) The numbers of variables or constraints in your formula-
tion should not grow exponentially with the problem dimensions n, p, or m.

(b) Carry out your method on the data given in affine_pol_data.m. To evaluate your affine
policy, generate 100 independent samples of u, and for each value, compute the objective
value of the affine policy, ¢’ 2™ (u), and of the optimal policy, ¢’ z*(u). Scatter plot the
objective value of the affine policy (y-axis) versus the objective value of the optimal policy
(z-axis), and include the line y = x on the plot. Report the average values of ¢’ z* (u) and
cTx*(u) over your samples. (These are estimates of E ¢’z (u) and Ec’z*(u). The first
number, by the way, can be found exactly.)

4.28 Probability bounds. Consider random variables X, Xo, X3, X4 that take values in {0,1}. We are
given the following marginal and conditional probabilities:

1) = 0.9,
1) = 0.9,
prob(X;=1) = 0.1,
prob(X; =1, X, =0|X3=1) = 0.7,
prob(Xy=1|Xs=1,X3=0) = 0.6.

Explain how to find the minimum and maximum possible values of prob(X, = 1), over all (joint)
probability distributions consistent with the given data. Find these values and report them.

Hints. (You should feel free to ignore these hints.)

e Matlab:
— CVX supports multidimensional arrays; for example, variable p(2,2,2,2) declares a
4-dimensional array of variables, with each of the four indices taking the values 1 or 2.
— The function sum(p,i) sums a multidimensional array p along the ith index.

— The expression sum(a(:)) gives the sum of all entries of a multidimensional array a. You
might want to use the function definition sum_all = @(A) sum( A(:));, so sum_all(a)
gives the sum of all entries in the multidimensional array a.
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e Python:

— Create a 1-dimensional Variable and manually index the entries. You should come up
with a reasonable scheme to avoid confusion.

e Julia:

— You can create a multidimensional array of variables in Convex.jl. For example, the
following creates a 4-dimensional array of variables, with each of the four indices taking
the values 1 or 2.

p = [Variable() for i in 1:16];
p = reshape(p, 2, 2, 2, 2)

— You can use the function sum to sum over various indices in the multidimesional array.
sum(p[:,:,:,:]) # sum all entries
sum(p[1,:,2,:]) # fix first and third indices

— To create constraints with the variables in the array, you need to access each variable
independently. Something like p >= 0 will not work.

4.29 Robust quadratic programming. In this problem, we consider a robust variation of the (convex)
quadratic program
minimize  (1/2)2” Pz +¢"2 +r
subject to Ax < b.

For simplicity we assume that only the matrix P is subject to errors, and the other parameters (g,
r, A, b) are exactly known. The robust quadratic program is defined as

minimize  suppeg((1/2)2T Pz + ¢tz + 1)
subject to Ax <b

where £ is the set of possible matrices P.

For each of the following sets £, express the robust QP as a tractable convex problem. Be as specific
as you can. (Here, tractable means that the problem can be reduced to an LP, QP, QCQP, SOCP,
or SDP. But you do not have to work out the reduction, if it is complicated; it is enough to argue
that it can be reduced to one of these.)

(a) A finite set of matrices: € = {Py,...,Px}, where P, € 8%, i=1,... K.

(b) A set specified by a nominal value Py € S/ plus a bound on the eigenvalues of the deviation
P — P()Z
E={Pe8S"| I =XP~-PF <~}

lull2 < 1}-

where v € R and F € S”}.
(¢) An ellipsoid of matrices:

K
£= {P0+Zm,-

i=1

You can assume P, € S",i=0,..., K.
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4.30

4.31

Smallest confidence ellipsoid. Suppose the random variable X on R™ has log-concave density p.
Formulate the following problem as a convex optimization problem: Find an ellipsoid £ that satisfies
prob(X € &) > 0.95 and is smallest, in the sense of minimizing the sum of the squares of its semi-
axis lengths. You do not need to worry about how to solve the resulting convex optimization
problem; it is enough to formulate the smallest confidence ellipsoid problem as the problem of
minimizing a convex function over a convex set involving the parameters that define £.

Stochastic optimization via Monte Carlo sampling. In (convex) stochastic optimization, the goal
is to minimize a cost function of the form F(z) = E f(x,w), where w is a random variable on €2,
and f : R" x Q — R is convex in its first argument for each w € . (For simplicity we consider
the unconstrained problem; it is not hard to include constraints.) Evidently F' is convex. Let p*
denote the optimal value, i.e., p* = inf, F(z) (which we assume is finite).

In a few very simple cases we can work out what F' is analytically, but in general this is not possible.
Moreover in many applications, we do not know the distribution of w; we only have access to an
oracle that can generate independent samples from the distribution.

A standard method for approximately solving the stochastic optimization problem is based on
Monte Carlo sampling. We first generate N independent samples, wy, . ..,wy, and form the empir-
ical expectation

. 1 X
F(z) = N Zf(l’awi)'
i=1

This is a random function, since it depends on the particular samples drawn. For each x, we
have E F(z) = F(z), and also E(F(z) — F(2))? < 1/N. Roughly speaking, for N large enough,
To (approximately) minimize F', we instead minimize F (z). The minimizer, 2*, and the optimal
value p* = F' (z*), are also random variables. The hope is that for N large enough, we have p* ~ p*.
(In practice, stochastic optimization via Monte Carlo sampling works very well, even when N is
not that big.)

One way to check the result of Monte Carlo sampling is to carry it out multiple times. We repeatedly
generate different batches of samples, and for each batch, we find £* and p*. If the values of p* are
near each other, it’s reasonable to believe that we have (approximately) minimized F. If they are
not, it means our value of N is too small.

Show that E p* < p*.

This inequality implies that if we repeatedly use Monte Carlo sampling and the values of p* that
we get are all very close, then they are (likely) close to p*.

Hint. Show that for any function G : R" x 2 — R (convex or not in its first argument), and any
random variable w on €2, we have

inf EG(z,w) > Einf G(z,w).

4.32 Satisfying a minimum number of constraints. Consider the problem

minimize  fo(x)
subject to  f;(x) < 0 holds for at least k values of i,
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with variable x € R", where the objective fy and the constraint functions f;, ¢ = 1,...,m (with
m > k), are convex. Here we require that only & of the constraints hold, instead of all m of them.
In general this is a hard combinatorial problem; the brute force solution is to solve all (r,';”) convex
problems obtained by choosing subsets of k& constraints to impose, and selecting one with smallest
objective value.

In this problem we explore a convex restriction that can be an effective heuristic for the problem.

(a) Suppose A > 0. Show that the constraint

m

D U+ i)y <m—k

i=1

guarantees that f;(z) < 0 holds for at least k values of i. ((u)4+ means max{u,0}.)

Hint. For each u € R, (14 Au)+ > 1(u > 0), where 1(u > 0) =1 for «w > 0, and 1(u > 0) =0
for u < 0.

(b) Consider the problem

minimize  fo(x)
subject to Y (1 4+ Afi(x))y <m—k
A >0,

with variables  and A. This is a restriction of the original problem: If (z,\) are feasible for
it, then x is feasible for the original problem. Show how to solve this problem using convex
optimization. (This may involve a change of variables.)

(c) Apply the method of part (b) to the problem instance

minimize Lz

subject to aiTa: < b; holds for at least k values of i,

with m = 70, k = 58, and n = 12. The vectors b, ¢ and the matrix A with rows aZT are given
in the file satisfy_some_constraints_data. *.

Report the optimal value of A, the objective value, and the actual number of constraints that
are satisfied (which should be larger than or equal to k). To determine if a constraint is
satisfied, you can use the tolerance aZTx —b; < €8s with efeas = 1070,

A standard trick is to take this tentative solution, choose the k constraints with the smallest
values of f;(z), and then minimize fyo(z) subject to these k constraints (i.e., ignoring the other
m — k constraints). This improves the objective value over the one found using the restriction.
Carry this out for the problem instance, and report the objective value obtained.

4.33 [Barvinok, Pataki] A standard form semidefinite program is defined as

minimize tr(CX)

subject to tr(4;X)=0b;, i=1,...,m (4)
X =0.
The variable X and the coefficients Ay, ..., A, are symmetric n X n matrices.
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A matrix X is called an extreme point of the feasible set of (4) if X is feasible and if the only matrix
V € S™ that satisfies the conditions

tr(A4;V)=0, i=1,....m, X+V=0, X-V=0 (5)
is V' = 0. In this problem we work out a bound on the rank of extreme points.

(a) Suppose X is feasible for (4) and has rank r. Define an eigenvalue decomposition

i-[o @]y olle e

]T
where [ Q1 Q2 | is orthogonal, @)1 has r columns, and A; is a diagonal r X r matrix with

positive diagonal elements. Show that V satisfies (5) if and only if it can be expressed as
V = Q1Y QT where Y € S satisfies

tr (QTA,Q1Y)=0, i=1,...,m, AM+Y >0, A=Y >=0.

(b) Show that if r(r +1)/2 > m, then X is not an extreme point.
(c) Interpret the SDP (4) as a relaxation of the non-convex QCQP

minimize 27Cx
subject to zTAx =b;, i=1,...,m.

What are the implications of part b for the exactness of the relaxation? (You can assume
that the feasible set of (4) is non-empty and bounded. Under this assumption, the SDP is
guaranteed to have optimal solutions that are extreme points of the feasible set.)

4.34 Ezact relaxation of a rank constrained problem. Consider the following optimization problem, which
we shall call problem A.

minimize tr(AP)
subject to rank(P) =k,
Xi(P) €{0,1} foralli=1,...,n

Here the variable P € S™, and \;(P) is its ith largest eigenvalue. We are give A € R"*" and k € Z
with k£ > 0. Both of the constraints are not convex.

Problem B is the following semidefinite program, with the same problem data.

minimize tr(AP)
subject to tr(P) =k,
0= P=<I,

(a) Show that problem B is a relaxation of problem A. That is, show that if P is feasible for
problem A then it is also feasible for problem B.

(b) Consider the problem
minimize ¢’z
subject to Y . x; =k
0 S Ty § 1

where the variable is x € R", and ¢ € R" is given. Explain why there always exists an optimal
x for which all components are integers.
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(c¢) Using the previous result, show that problem B is a tight relaxation of problem A. Specifically,
show that there is an optimal solution P to problem B for which \;(P) € {0, 1} for all s.

4.35 A robust SDP. We consider the robust optimization problem

minimize Lz

n
subject to Y w;(A; +U;) = B for all U; € SP with ||Ujll2 <1,i=1,...,n.
i=1
The optimization variable is an n-vector x. The n-vector ¢ and the matrices A;, B € SP are given.
The norm ||U;||2 is the matrix norm. (For symmetric matrices |U||s = maxy |Ax(U)].)

(a) Show that x satisfies the constraint in the problem if and only if
n
2]l < Amin(B = )z 4;).
i=1
The right-hand side is the smallest eigenvalue of B — )" ;A;.
(b) Use the observation of part (a) to formulate the robust optimization problem as an SDP.
4.36 For a symmetric n X n matrix A we define f(A) as the optimal value of the semidefinite program
minimize trX +trY
X A
' -
subject to [ A V4l } =0
Y =0,
with variables X € S" and Y € S".

(a) Is f(A) a convex function of A?

(b) Express f(A) as a function of the eigenvalues of A, i.e., in the form
F(A) =) _o(ni(4),
i=1

where A1(A), ..., \,(A) are the eigenvalues of A. Give an explicit formula for ¢.

4.37 In this problem we generalize the optimality condition in §4.2.3 of Convex Optimization (page 4-9
of the slides). We consider an optimization problem
minimize f(x) + g(z)

where f : R™ — R is differentiable and ¢ : R® — R is convex. We do not assume that f is
convex or that its domain is a convex set. (However, recall our convention that the domain of a
differentiable function is an open set.) The problem in §4.2.3 is a special case with g the indicator
function of a convex set. (The indicator function of a set C' is the function with domain C', and
function value zero on C.)

The generalization of the optimality criterion in §4.2.3 is

i €dom fNndomyg, V()T (y—2)+g(y)—g(z)>0forall y € domg. (6)
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(a) Show that (6) is a necessary condition for Z to be locally optimal.
(b) Assume f is convex. Show that (6) is also sufficient for & to be optimal.

(c) Take g(x) = ||x||1. Show that (6) reduces to the following: & € dom f and foreachi =1,...,n,
of(z) 0f () 0f ()

—_— = — 1 T _— < 1 A': —_— = i T .
oz, 1 ifz; >0, ‘Gxi <1 ifz; =0, oz, 1 ifz; <0

4.38 Robust piecewise-linear optimization. Consider the robust piecewise-linear minimization problem

minimize sup ‘max  (alx+b;)
a;€A;, 1=1,....m 1=1,..,m

with variable x € R™. For each of the following definitions of A;, formulate the problem as an
SOCP.
(a) Each set A; is a Euclidean ball
.Ai == {(IZ' | Hal — CZ'HQ § T‘Z’}.

The vectors ¢; and positive scalars r; are given.
(b) Each set A; is the union of p; Euclidean balls
Ai= | {ailllai - cijll2 < rij}
.7:1777)7,
The vectors ¢;; and positive scalars r;; are given.
(¢) Each set A; is the intersection of p; Euclidean balls
Ai= [ {ailllai —cijll2 < rij}
J=1,...,p;
The vectors c;; and positive scalars 7;; are given. We assume the sets A; have nonempty
interior.
4.39 Risk-sensitive linear programming. We revisit the linear programming problem with random cost
(page 154 of Convex Optimization). The goal is to give an interpretation to the LP
minimize ¢’z
subject to Gz =< h

when the cost vector ¢ is random. For simplicity, we assume a discrete distribution with m possible

values: ¢ takes the value ¢; with probability p;, for ¢ = 1,...,m. The vectors ¢; represent different
scenarios or cases, each occurring with probability p;. The mean and covariance matrix are denoted
by
m m
c= Zpici, Y= Zpi(ci — E)(Ci — E)T.
i=1 i=1

In this exercise, we formulate the problem as
1 1, «
minimize —logE T = = log Z pie“’C;m
Y Y )
subject to Gx =< h.
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We will see that the parameter + controls the risk sensitivity of the optimization model. To simplify
some notation, we define the function f, : R™ — R with

1 “ .
Fw) =2 log Y pie™
i=1

(where p; > 0 and ), p; = 1). With this notation, problem (7) can be written as

minimize  f,(Cx) (8)
subject to Gz = h,

where C' is the matrix with rows cl-T, i=1,...,m.

(a) We first interpret the limits for v — +o00 and v — 0. Show that

lim Cz) = max clx lim Cz) = min clx lim Cz) =élx.
,Y_mfw( ) max c;x, V_)_Oofw( ) in ez, W_)()fw( )

In (7) these three values of v correspond to extreme pessimism (minimizing the worst case

max; ¢! x), extreme optimism (minimizing the best case min; ¢/ x), and a risk-neutral attitude

(minimizing the average case ¢! ).

(b) Next we examine the effect of choosing ~ positive or negative. Show that

£ (Cz) >z ify >0, £ (Cx) <z ify<o.

Hence, if v > 0, the variability of ¢!z around its mean increases the cost function; if v < 0,
it decreases it. In problem (7), choosing v > 0 makes the optimization strategy risk-averse;
choosing v < 0 makes it risk-seeking. We also note that the objective function is convex if
~v > 0 and concave if v < 0.

(c) Finally, we relate (7) to the QP formulation on page 155 of Convex Optimization. We make
a quadratic approximation of the function f,(y) around the vector § = (¢/z)1. Verify that

Vi@ =p, V() =~(diag(p) —pp"),
where p = (p1,...,pm). Then show that if we make the approximation
. . o1 . . .
(Co) = f1(5) + V(@) (Co = §) + 5(Cz = §)T V2 f,(5)(Cx = §)
in (8), the problem reduces to

minimize &'z + (v/2)zT B
subject to Gx = h.

4.40 Consider the optimization problem

minimize 7
subject to 1 < —1, 2%+ 23 <2,

with variable x = (z1,22). Determine whether each of the following statements is true or false.
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(a) The point (—1,1) is a solution.

(b) The optimal value is 1.

(¢) The problem is convex.
)

(d) The problem has multiple solutions.

4.41 Feasibility and optimal value. Consider an optimization problem in which we seek to minimize the
objective. We let p* denote the optimal value of the problem. Which of the following statements
are true?

(a) The problem is feasible if and only if p* < oo.
(b) The problem has an optimal point if and only if p* is finite.
(¢) If p* = —o0, the problem is feasible.
4.42 Scalarizing a bi-criterion problem using the maz function. Consider the bi-criterion optimization

problem
minimize (f(x),g(x)),

with variable z. Suppose Z is the unique minimizer of max{f(z),g(x)}. Is Z Pareto optimal?
Either explain why it is, or give a counter-example.
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5

Duality

5.1 Numerical perturbation analysis example. Consider the quadratic program

minimize a:% + 23:% — T1x9 — X1
subject to x1 4+ 2z < uy

x1 — 4we < ug,

5x1 + 76z < 1,

with variables x1, x2, and parameters uq, us.

(a)

Solve this QP, for parameter values u; = —2, us = —3, to find optimal primal variable values
27 and z%, and optimal dual variable values A7, A5 and A3. Let p* denote the optimal objective
value. Verify that the KKT conditions hold for the optimal primal and dual variables you
found (within reasonable numerical accuracy).

Hint: Check the documentation or users’ guides for CVX* to find out how to retrieve optimal
dual variables.

We will now solve some perturbed versions of the QP, with
up = —2+ 01, up = —3 + do,

where 01 and g each take values from {—0.1,0,0.1}. (There are a total of nine such combi-
nations, including the original problem with é; = d2 = 0.) For each combination of §; and dq,
make a prediction pl*)red of the optimal value of the perturbed QP, and compare it to Pk ,ct,
the exact optimal value of the perturbed QP (obtained by solving the perturbed QP). Put
your results in the two righthand columns in a table with the form shown below. Check that
the inequality p§, .4 < Picace holds.

o1 o2 | p ;;red Péxact
0 0
0|01
0 0.1
—0.1 0
—-0.1] -0.1
—0.1 0.1
0.1 0
0.1]—-0.1
0.1 0.1

5.2 A determinant mazimization problem. We consider the problem

minimize logdet X !
subject to AZTXAi <B;, i=1,...,m,

with variable X € S", and problem data A4; € R"**i| B; e S]frﬁr, i =1,...,m. The constraint
X > 0 is implicit.

We can give several interpretations of this problem. Here is one, from statistics. Let z be a random
variable in R", with covariance matrix X, which is unknown. However, we do have (matrix) upper
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5.3

5.4

bounds on the covariance of the random variables y; = AZTz e R¥, which is AZTX A;. The problem
is to find the covariance matrix for z, that is consistent with the known upper bounds on the
covariance of y;, that has the largest volume confidence ellipsoid.

Derive the Lagrange dual of this problem. Be sure to state what the dual variables are (e.g.,
vectors, scalars, matrices), any constraints they must satisfy, and what the dual function is. If
the dual function has any implicit equality constraints, make them explicit. You can assume that
S AZ-A;TF > 0, which implies the feasible set of the original problem is bounded.

What can you say about the optimal duality gap for this problem?

The relative entropy between two vectors x, y € R} | is defined as

> wxlog(wr/yk).

k=1

This is a convex function, jointly in « and y. In the following problem we calculate the vector x
that minimizes the relative entropy with a given vector y, subject to equality constraints on z:

n
minimize Z xy log(zk/yr)
k=1
subject to Az =15
172 =1

The optimization variable is x € R". The domain of the objective function is R , . The parameters
yeRL , Ac R™" and b e R™ are given.

Derive the Lagrange dual of this problem and simplify it to get
maximize b7z —log Y p_, e ?
(ak is the kth column of A).

Source localization from range measurements [Beck, Stoica, and Li]. A signal emitted by a source
at an unknown position x € R" (n = 2 or n = 3) is received by m sensors at known positions ¥,

.., Ym € R™. From the strength of the received signals, we can obtain noisy estimates dj of the
distances ||x — yg||2. We are interested in estimating the source position = based on the measured
distances d.

In the following problem the error between the squares of the actual and observed distances is
minimized:
= 2
minimize fo(z) = Z (Jlz — vz — di) .
k=1

T

Introducing a new variable t = z* x, we can express this as

m

. . . 2
minimize Z (t— 2y @ + |lyxl3 — di) (9)
k=1

subject to 2z —t=0.
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The variables are x € R™, t € R. Although this problem is not convex, it can be shown that
strong duality holds. (It is a variation on the problem discussed on page 229 and in exercise 5.29
of Convex Optimization.)

Solve (9) for an example with m = 5,

18 [ 20 (15 (15 25
Y1 = 25 ) Y2 = 1.7 ) Ys = 1.5 ) Yg = 2.0 ) Ys = 1.5 )
and

d = (2.00, 1.24, 0.59, 1.31, 1.44).

The figure shows some contour lines of the cost function fy, with the positions ¥y, indicated by
circles.

0.5

0.5 1 1.5 2 2.5 3
I

To solve the problem, you can note that x* is easily obtained from the KKT conditions for (9) if
the optimal multiplier v* for the equality constraint is known. You can use one of the following
two methods to find v*.

e Derive the dual problem, express it as an SDP, and solve it using CVX.
e Reduce the KKT conditions to a nonlinear equation in v, and pick the correct solution (simi-

larly as in exercise 5.29 of Convex Optimization).

5.5 Projection on the ¢1 ball. Consider the problem of projecting a point a € R"™ on the unit ball in
f1-norm:
minimize  (1/2)||x — al|3
subject to ||z]j; < 1.

Derive the dual problem and describe an efficient method for solving it. Explain how you can
obtain the optimal x from the solution of the dual problem.
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5.6 A nonconvex problem with strong duality. On page 229 of Convex Optimization, we consider the
problem
minimize  f(z) = 27 Az +2bTx

. 1
subject to 2Tr <1 (10)

with variable z € R", and data A € S", b € R™. We do not assume that A is positive semidefinite,
and therefore the problem is not necessarily convex. In this exercise we show that x is (globally)
optimal if and only if there exists a A such that

lzz <1, X20,  A+A =0,  (A+M)z=-b  AI-|zfz)=0. (1)

From this we will develop an efficient method for finding the global solution. The conditions (11)
are the KKT conditions for (10) with the inequality A + AI > 0 added.

(a) Show that if x and A satisfy (11), then f(x) = inf;z L(Z,\) = g()\), where L is the Lagrangian
of the problem and ¢ is the dual function. Therefore strong duality holds, and x is globally
optimal.

(b) Next we show that the conditions (11) are also necessary. Assume that z is globally optimal
for (10). We distinguish two cases.

(i) |lz]l2 < 1. Show that (11) holds with A = 0.

(ii) ||z||2 = 1. First prove that (A+ Al)x = —b for some A > 0. (In other words, the negative
gradient —(Ax + b) of the objective function is normal to the unit sphere at x, and point
away from the origin.) You can show this by contradiction: if the condition does not
hold, then there exists a direction v with v’z < 0 and v”(Az 4+ b) < 0. Show that
f(z+tv) < f(x) for small positive t.

It remains to show that A + AI »= 0. If not, there exists a w with w’ (A + A\I)w < 0, and
without loss of generality we can assume that w’z # 0. Show that the point y = = + tw
with t = —2w?z/wlw satisfies ||y|l2 = 1 and f(y) < f(z).

(¢) The optimality conditions (11) can be used to derive a simple algorithm for (10). Using the
eigenvalue decomposition A = > 7 | aiqiqiT , of A, we make a change of variables y; = qiT x,
and write (10) as

minimize > 1, oy + 230 Bivi
subject to 3Ty <1

where §; = ¢! b. The transformed optimality conditions (11) are
if we assume that oy > ag > -+ > ay,. Give an algorithm for computing the solution y and .

5.7 Connection between perturbed optimal cost and Lagrange dual functions. In this exercise we explore
the connection between the optimal cost, as a function of perturbations to the righthand sides of
the constraints,

p*(u) =inf{fo(z) | Iz € D, fi(x) <wy, i=1,...,m},

(as in §5.6), and the Lagrange dual function

g(A) = inf (fo(@) + Mfi() + -+ Anfm(2)),
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with domain restricted to A = 0. We assume the problem is convex. We consider a problem with
inequality constraints only, for simplicity.

We have seen several connections between p* and g¢:
e Slater’s condition and strong duality. Slater’s condition is: there exists © < 0 for which

p*(u) < oco. Strong duality (which follows) is: p*(0) = sup, g(A). (Note that we include the
condition A > 0 in the domain of g.)

o A global inequality. We have p*(u) > p*(0) — \*Tu, for any u, where A\* maximizes g.

e Local sensitivity analysis. If p* is differentiable at 0, then we have Vp*(0) = —\*, where \*
maximizes g.

In fact the two functions are closely related by conjugation. Show that

Here (—g)* is the conjugate of the function —g. You can show this for u € int dom p*.

Hint. Consider the problem

minimize  fo(x)
subject to  fi(x) = fi(zr) —u; <0, i=1,...,m.

Verify that Slater’s condition holds for this problem, for u € int dom p*.

5.8 Fxact penalty method for SDP. Consider the pair of primal and dual SDPs

(P)  minimize c'z (D)  maximize tr(FpZ)
subject to F(x) 20 subject to tr(F;Z)+c¢ =0, i=1,...,m
Z =0,

where F(z) = Fy + 1 Fy + -+ - + z,F,, and F; € SP for i = 0,...,n. Let Z* be a solution of (D).
Show that every solution x* of the unconstrained problem

minimize ¢’z + M max{0, Apax (F(z))},
where M > tr Z*, is a solution of (P).
5.9 Quadratic penalty. Consider the problem

minimize  fo(x)

subject to  fi(z) <0, i=1,...,m,
where the functions f; : R® — R are differentiable and convex.
Show that m

$(x) = fo(z) + o Y max{0, fi(z)}?,

i=1

where « > 0, is convex. Suppose & minimizes ¢. Show how to find from  a feasible point for the
dual of (12). Find the corresponding lower bound on the optimal value of (12).
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5.10 Boolean least-squares. We consider the non-convex least-squares approximation problem with
Boolean constraints

minimize || Az — b||3

subject to :Ez =1, k=1,...,n, (13)

where A € R"™*™ and b € R™. We assume that rank(A) = n, i.e., AT A is nonsingular.

One possible application of this problem is as follows. A signal & € {—1,1}" is sent over a noisy
channel, and received as b = A% + v where v ~ N(0,021) is Gaussian noise. The solution of (13)
is the maximum likelihood estimate of the input signal Z, based on the received signal b.

(a)
(b)

Derive the Lagrange dual of (13) and express it as an SDP.
Derive the dual of the SDP in part (a) and show that it is equivalent to

minimize tr(ATAZ) — 26T Az +b7b
subject to diag(Z) =1

z 2], . (14)
1=
Interpret this problem as a relaxation of (13). Show that if
Z =z
rank([ T }) =1 (15)

at the optimum of (14), then the relaxation is exact, i.e., the optimal values of problems (13)
and (14) are equal, and the optimal solution z of (14) is optimal for (13). This suggests a
heuristic for rounding the solution of the SDP (14) to a feasible solution of (13), if (15) does
not hold. We compute the eigenvalue decomposition

J oz _ni:l)\' V; V; r
ZT 1 _,_1 ! ti ti ’

where v; € R" and t; € R, and approximate the matrix by a rank-one matrix

Z z ~ )\ U1 U1 r
ZT 1 ~ A tl tl )

(Here we assume the eigenvalues are sorted in decreasing order). Then we take z = sign(v;)
as our guess of good solution of (13).

We can also give a probabilistic interpretation of the relaxation (14). Suppose we interpret z
and Z as the first and second moments of a random vector v € R" (i.e., 2 = Ev, Z = Evvl).
Show that (14) is equivalent to the problem

minimize E ||Av — b||3
subject to Efu,% =1, k=1,...,n,

where we minimize over all possible probability distributions of v.

This interpretation suggests another heuristic method for computing suboptimal solutions
of (13) based on the result of (14). We choose a distribution with first and second moments
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Ev = z, Evww! = Z (for example, the Gaussian distribution N'(z, Z — 227)). We generate a
number of samples ¢ from the distribution and round them to feasible solutions = = sign(?).
We keep the solution with the lowest objective value as our guess of the optimal solution
of (13).

(d) Solve the dual problem (14) using CVX. Generate problem instances using the Matlab code

randn(’state’,0)

m = 50;
n = 40;
A = randn(m,n);

xhat = sign(randn(n,1));
b = Axxhat + s*randn(m,1);

for four values of the noise level s: s = 0.5, s =1, s = 2, s = 3. For each problem instance,
compute suboptimal feasible solutions z using the the following heuristics and compare the
results.

(i) z(® = sign(z}s) where zy4 is the solution of the least-squares problem
minimize || Az — b||3.

(ii) z(®) = sign(z) where z is the optimal value of the variable z in the SDP (14).

(iii) z(© is computed from a rank-one approximation of the optimal solution of (14), as ex-
plained in part (b) above.

(iv) z@ is computed by rounding 100 samples of N(z, Z —zzT), as explained in part (c) above.

5.11 Monotone transformation of the objective. Consider the optimization problem

minimize  fo(x) (16)
subject to  fi(z) <0, i=1,...,m.

where f; : R® = R for i = 0,1,...,m are convex. Suppose ¢ : R — R is increasing and convex.
Then the problem ~
subject to  fi(x) <0, i=1,...,m

is convex and equivalent to it; in fact, it has the same optimal set as (16).

In this problem we explore the connections between the duals of the two problems (16) and (17).
We assume f; are differentiable, and to make things specific, we take ¢(a) = exp a.

(a) Suppose A is feasible for the dual of (16), and Z minimizes
fol@) + Y Nifil=).
i=1

Show that Z also minimizes

exp fo(x) + > Nifi(x)
for appropriate choice of . Thus, X is dual feasible for (17).
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(b) Let p* denote the optimal value of (16) (so the optimal value of (17) is expp*). From A\ we
obtain the bound

P* > g(N),

where g is the dual function for (16). From A we obtain the bound exp p* > G(\), where § is
the dual function for (17). This can be expressed as

p* > log g(N).
How do these bounds compare? Are they the same, or is one better than the other?

5.12 Variable bounds and dual feasibility. In many problems the constraints include variable bounds, as

in
minimize  fo(x)
subject to fi(x) <0, i=1,...,m (18)
i<z <wu;,, t1=1,...,n.

Let 1 € R} be the Lagrange multipliers associated with the constraints x; < u;, and let v € R}

be the Lagrange multipliers associated with the constraints I; > x;. Thus the Lagrangian is
m
L(z, A\, p,v) = fo(z) + Z Nifi(@) + pl(z —u) + 7 (1 —2).
i=1

(a) Show that for any z € R™ and any A, we can choose p = 0 and v > 0 so that x minimizes
L(z, A\, u,v). In particular, it is very easy to find dual feasible points.

(b) Construct a dual feasible point (A, u, ) by applying the method you found in part (a) with
x = (l4+u)/2 and A = 0. From this dual feasible point you get a lower bound on f*. Show
that this lower bound can be expressed as

F7= fol(l+u)/2) = ((w=1)/2)" [V fo((L + u)/2)]
where | - | means componentwise. Can you prove this bound directly?

5.13 Deducing costs from samples of optimal decision. A system (such as a firm or an organism) chooses
a vector of values x as a solution of the LP

minimize Lz

subject to Ax = b,

with variable x € R"™. You can think of x € R" as a vector of activity levels, b € R™ as a
vector of requirements, and ¢ € R" as a vector of costs or prices for the activities. With this
interpretation, the LP above finds the cheapest set of activity levels that meet all requirements.
(This interpretation is not needed to solve the problem.)

We suppose that A is known, along with a set of data
(b(l),x(l)), o (b(r),a;(")),

where 2() is an optimal point for the LP, with b = b, (The solution of an LP need not be unique;
all we say here is that z(9) is an optimal solution.) Roughly speaking, we have samples of optimal
decisions, for different values of requirements.
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You do not know the cost vector c. Your job is to compute the tightest possible bounds on the
costs ¢; from the given data. More specifically, you are to find ¢;"** and ¢;"", the maximum and
minimum possible values for ¢;, consistent with the given data.

Note that if = is optimal for the LP for a given ¢, then it is also optimal if ¢ is scaled by any positive
factor. To normalize ¢, then, we will assume that ¢; = 1. Thus, we can interpret ¢; as the relative
cost of activity 4, compared to activity 1.

(a) Explain how to find ¢ and ¢™". Your method can involve the solution of a reasonable

number (not exponential in n, m or r) of convex or quasiconvex optimization problems.

(b) Carry out your method using the data found in deducing_costs_data.m. You may need
to determine whether individual inequality constraints are tight; to do so, use a tolerance
threshold of ¢ = 1073, (In other words: if agaz — b, < 1073, you can consider this inequality
as tight.)

Give the values of ¢ min

)

max

9% and ¢, and make a very brief comment on the results.

5.14 Kantorovich inequality.

(a) Suppose a € R" with a1 > ag > -+ > a, >0, and b € R" with by = 1/ay.
Derive the KKT conditions for the convex optimization problem

minimize — log(a”z) — log(b” z)
subject to x>0, 1Tz =1.
Show that z = (1/2,0,...,0,1/2) is optimal.

b) Suppose A € S™! | with eigenvalues A\ sorted in decreasing order. Apply the result of part (a),
++
with ai = Ag, to prove the Kantorovich inequality:

2 (uTAu) 1/2 (uTA_lu) 1/2 < \/% + \/¥
n 1

5.15 State and solve the optimality conditions for the problem

-1
. X7 Xo
minimize logdet <[ XTI X, } >

subject to trX; =«
tI‘X2 = ,8
tr X5 = 1.

for all u with [|ull2 = 1.

The optimization variable is

X X
X_[XzT X:J’

with X; € S”, Xo € R™", X3 € S". The domain of the objective function is S?[ﬁr. We assume
a >0, and ay > (2.
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5.16

5.17

5.18

Consider the optimization problem

minimize —logdet X + tr(SX)
subject to X is tridiagonal

with domain S, and variable X € S". The matrix S € S" is given. Show that the optimal Xy

satisfies
(Xo)ij = Sijy  li—3] < 1.

opt /.

We denote by f(A) the sum of the largest r eigenvalues of a symmetric matrix A € S (with
1<r<mn),ie,

FA) =" M(4),
k=1

where A1(A), ..., \,(A) are the eigenvalues of A sorted in decreasing order.
(a) Show that the optimal value of the SDP

maximize tr(AX)
subject to tr X =1
0=X =<1,

with variable X € S", is equal to f(A).
(b) Show that f is a convex function.

(c) Assume A(z) = Ao+ 2141 + - + 2 A, with Ay € S™. Use the observation in part (a) to
formulate the optimization problem

minimize f(A(z)),
with variable x € R™, as an SDP.
An ezact penalty function. Suppose we are given a convex problem

minimize  fo(z) (19)
subject to fi(z) <0,i=1,...,m

with dual

maximize g(\)

subject to A > 0. (20)

We assume that Slater’s condition holds, so we have strong duality and the dual optimum is
attained. For simplicity we will assume that there is a unique dual optimal solution A*.

For fixed t > 0, consider the unconstrained minimization problem

minimize fo(z) 4+t max f;(z)%, (21)

i=1,....m
where f;(z)" = max{f;(x),0}.

(a) Show that the objective function in (21) is convex.
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(b) We can express (21) as

minimize  fo(x) 4 ty
subject to  fi(z) <y, i=1....,m (22)
0<y

where the variables are z and y € R.

Find the Lagrange dual problem of (22) and express it in terms of the Lagrange dual function
g for problem (19).

(c) Use the result in (b) to prove the following property. If ¢ > 17 \*, then any minimizer of (21)
is also an optimal solution of (19).

(The second term in (21) is called a penalty function for the constraints in (19). It is zero if x is
feasible, and adds a penalty to the cost function when x is infeasible. The penalty function is called
exzact because for ¢ large enough, the solution of the unconstrained problem (21) is also a solution
of (19).)

5.19 Infimal convolution. Let fi,..., fm be convex functions on R™. Their infimal convolution, denoted
g = f1o--- o fm (several other notations are also used), is defined as

g(l‘) = inf{f1($1) + -+ fm(xm) | 1+t Ty, = l‘},

with the natural domain (i.e., defined by g(x) < o). In one simple interpretation, f;(x;) is the cost
for the ith firm to produce a mix of products given by x;; g(x) is then the optimal cost obtained
if the firms can freely exchange products to produce, all together, the mix given by x. (The name
‘convolution’ presumably comes from the observation that if we replace the sum above with the
product, and the infimum above with integration, then we obtain the normal convolution.)

(a) Show that g is convex.

(b) Show that ¢* = f; +--- + f»,. In other words, the conjugate of the infimal convolution is the
sum of the conjugates.

(c) Verify the identity in part (b) for the specific case of two strictly convex quadratic functions,
fi(z) = (1/2)2" Pz, with P, € 8", i =1,2.
Hint: Depending on how you work out the conjugates, you might find the matrix identity
(X +Y)lY = X1 XL+ v =11 useful.

5.20 Derive the Lagrange dual of the optimization problem

n
minimize Z o(x;)

i=1
subject to Az =1b

with variable x € R™, where

u C
ul e
c—Ju] = Tul

Pu) =

dom ¢ = (—c¢,c).
¢ is a positive parameter. The figure shows ¢ for ¢ = 1.
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5.21 Robust LP with polyhedral cost uncertainty. We consider a robust linear programming problem,
with polyhedral uncertainty in the cost:

minimize  SUp.cc cl'x
subject to Ax > b,

with variable x € R", where C = {c¢ | Fc < g}. You can think of x as the quantities of n products
to buy (or sell, when z; < 0), Az = b as constraints, requirements, or limits on the available
quantities, and C as giving our knowledge or assumptions about the product prices at the time
we place the order. The objective is then the worst possible (i.e., largest) possible cost, given the
quantities z, consistent with our knowledge of the prices.

In this exercise, you will work out a tractable method for solving this problem. You can assume
that C # (), and the inequalities Ax = b are feasible.

(a) Let f(x) = sup.cc ¢l @ be the objective in the problem above. Explain why f is convex.

(b) Find the dual of the problem

maximize clx

subject to Fc < g,

with variable ¢. (The problem data are x, F', and g.) Explain why the optimal value of the
dual is f(z).

(c) Use the expression for f(z) found in part (b) in the original problem, to obtain a single LP
equivalent to the original robust LP.

(d) Carry out the method found in part (c) to solve a robust LP with the data below. In Matlab:
rand(’seed’,0);
A = rand(30,10);

b = rand(30,1);
c_nom = 1+rand(10,1); % nominal c values

In Python:
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5.22

5.23

import numpy as np

np.random.seed(10)

(m, n) = (30, 10)

A = np.random.rand(m, n); A = np.asmatrix(A)

b = np.random.rand(m, 1); b = np.asmatrix(b)

c_nom = np.ones((n, 1)) + np.random.rand(n, 1); c_nom = np.asmatrix(c_nom)
In Julia:

srand (10) ;

n = 10;

m = 30;

A = rand(m, n);

b = rand(m, 1);

c_nom = 1 + rand(n, 1);

Then, use C described as follows. Each ¢; deviates no more than 25% from its nominal value,
i.€., 0.75¢chom = ¢ = 1.25¢hom, and the average of ¢ does not deviate more than 10% from the
average of the nominal values, i.e., 0.9(17 cpom)/n < 17¢/n < 1.1(17 cpom ) /0.

Compare the worst-case cost f(x) and the nominal cost ¢z for z optimal for the robust
problem, and for z optimal for the nominal problem (i.e., the case where C = {cpom}). Com-

pare the values and make a brief comment.

Diagonal scaling with prescribed column and row sums [Marshall and Olkin]. Let A be an n X n
matrix with positive entries, and let ¢ and d be positive n-vectors that satisfy 17¢ = 17d = 1.
Consider the geometric program

minimize 27 Ay

n
subject to [ z{ =1
i=1
n
d;
[1 ij =4
J=1

with variables z,y € R" (and implicit constraints z > 0, y > 0). Write this geometric program
in convex form and derive the optimality conditions. Show that if z and y are optimal, then the
matrix

1
satisfies B1 = ¢ and BT1 = d.

[Schoenberg] Suppose m balls in R", with centers a; and radii r;, have a nonempty intersection.
We define y to be a point in the intersection, so

ly —ailla <r, i=1,...,m. (23)

Suppose we move the centers to new positions b; in such a way that the distances between the
centers do not increase:
”bi—bj”g S ”CLZ'—CL]'HQ, Z,j: 1,...,m. (24)
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We will prove that the intersection of the translated balls is nonempty, i.e., there exists a point x

with ||z — b;||l2 < r;, i =1,...,m. To show this we prove that the optimal value of
mln}mlze t ) , ‘ (25)
subject to ||z —bil|5 <7 +t, i=1,...,m,
with variables x € R" and ¢t € R, is less than or equal to zero.
(a) Show that (24) implies that
T T .
t—(x—b) (x—b;) <—(y—a;) (y—a;) fori,jel,
if (z,t) is feasible in (25), and I C {1,...,m} is the set of active constraints at x, t.
(b) Suppose z,t are optimal in (25) and that Aq, ..., A, are optimal dual variables. Use the

optimality conditions for (25) and the inequality in part a to show that

m
t—t—nZAx—b )3 < - Z y —a)|3.
=1 i=1

5.24 Controlling a switched linear system via duality. We consider a discrete-time dynamical system
with state z; € R". The state propagates according to the recursion

.’L’t+1:At.’L’t, tZO,l,...,T—l,

where the matrices A; are to be chosen from a finite set A = {AM ... AU} in order to control the
state x; over a finite time horizon of length T'. More formally, the switched-linear control problem
is

minimize 311, f(z)

subject to xy41 = Awm)g,  fort=0,...,T—1

The problem variables are x; € R", for t = 1,...,T, and v € {1,...,K}, for t =0,...,7 — 1.
We assume the initial state, 2o € R" is a problem parameter (i.e., is known and fixed). You may
assume the function f is convex, though it isn’t necessary for this problem.

Note that, to find a feasible point, we take any sequence ug,...,ur—1 € {1,...,K}; we then
generate a feasible point according to the recursion

zpp1 = AWg, t=01,...,T—1.

The switched-linear control problem is mot convex, and is hard to solve globally. Instead, we
consider a heuristic based on Lagrange duality.

(a) Find the dual of the switched-linear control problem explicitly in terms of z, AW AWK,
the function f, and its conjugate f*. Your formulation cannot involve a number of constraints
or objective terms that is exponential in K or T. (This includes minimization or maximization
with an exponential number of terms.)
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(b) Given optimal dual variables v7,..., v} corresponding to the 7" constraints of the switched-
linear control problem, a heuristic to choose u; is to minimize the Langrangian using these
optimal dual variables:

- _ . . N N
(tg,...,up—1) € argmin inf L(xy,...,z7,u0,...,ur—1,V5,..., V),
ug,.ur—1€{1,.... K} T1oTT

Given the optimal dual variables, show (explicitly) how to find o, ..., Upr—1.

(c) Consider the case f(z) = (1/2)z7 Qz. with Q € S',. For the data given in sw_lin ctrl data. *,
solve the dual problem and report its optimal value d*, which is a lower bound on p*. (As a
courtesy, we also included p* in the data file, so you can check your bound.)

(d) Using the same data as is part (c), carry out the heuristic method of part (b) to compute
U, - .., Ur—1. Use these values to generate a feasible point. Report the value of the objective
at this feasible point, which is an upper bound on p*.

5.25 [Friedland and Karlin] Let A be an n x n matrix with positive entries, and let v and v be two
positive n-vectors. Show that one can compute positive diagonal matrices D, and Dy that satisfy

(DlADg)u = u, (DlADg)T’U =V (26)
by the following method. Define a; = w;v; for ¢ = 1,...,n, and solve the optimization problem
minimize  [[ (> Ajjx;)*
=1 j=1 (27)

n
subject to [ " =1
i=1

with domain {x € R" | z > 0}. Then use the solution z to define
D, = diag(u) diag(Az)™, Dy = diag(u) ™! diag(z).

The first equality in (26) follows immediately from the expressions of Dy and Ds. To show the
second equality in (26), express (27) as a convex optimization problem and derive the optimality
conditions.

5.26 Consider the optimization problem
minimize ||Az — blla + | z||1
with A € R"™*", b e R™, and v > 0. The variable is an n-vector x.
(a) Derive the Lagrange dual of the equivalent problem

minimize  |ly|l2 + ¥||z|1
subject to Ar —b=1y

with variables x € R"™ and y € R"™.

(b) Suppose Az* — b # 0 where z* is an optimal point. Define r = (Az* —b)/||Az* — b||2. Show
that
AT rlloo <7, 1T AT 4 o]la* [ = 0.
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5.27

5.28

5.29

(c) Show that if the Euclidean norm of the ith column of A is less than v, then x7 = 0.

Consider the optimization problem

m
minimize Z h(||Aiz + bi||2) — '
=1

with variable z € R™, where ¢ € R", 4; € R**"™, b; € R?, and

h(u):{ (u—1)2/2 u>1

0 otherwise.

Derive the Lagrange dual of the equivalent problem

m
minimize Y h(||yill2) — ¢
i=1
subject to A;x+b;—y; =0, i=1,...,m,

with variables z € R® and y; € R3 for i = 1,...,m.

This optimization problem describes the equilibrium of a structure consisting of m elastic cables
suspended between different points or nodes. Some of the nodes are anchored, other nodes are free.
The variable x contains the displacements of the free nodes. The vector ¢ specifies the external
forces applied to the nodes. The norm ||A;z + b;||2 is the distance between the endpoints of the ith
cable as a function of the node displacements. The ith term in the sum in the cost function is the
potential energy stored in the ith cable, assuming its undeformed length is one.

Robust least squares with polyhedral uncertainty. We consider a robust least-squares problem

m
minimize Z sup (al z — b;)?
i=1 a; €P;
with variable x € R™. Each set P; is a nonempty and bounded polyhedron, defined as
P, = {a; € R" | Cja; = d;}

with C; € RP*™, d; € RP". If we introduce variables t; > sup,,cp. |a! © — b;| we can write the
problem as

m
minimize Y ¢
i=1

subject to  sup max{alx — b;, —alz + b} <t;, i=1,...,m.
a; €P;

Formulate this problem as a QP.

For an m x n-matrix A (with m > n) and an integer k between 1 and n, we define f(A) as the sum
of the largest k singular values of A:

f(A) =01(A) + -+ 0x(A),

where 01(A), 02(A), ..., 0n,(A) denote the singular values of A in nonincreasing order.
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(a) Show that f(A) is the optimal value of the SDP

maximize tr(ATX)

. U X
subject to [XT v ]
U=x1
VI
trU +trV =2k,

=0

with variables X € R™*", U € S™, V € S".
Hint. The singular value decomposition of A can be written as A = PXQT, where P € R™*™
and Q € R™ ™ are orthogonal matrices (PTP = I, QTQ = I), and ¥ is a diagonal m x n matrix
with elements ¥;; = 0;(A) for i = 1,...,n, and ¥;; = 0 for i # j. Use the decomposition to
reformulate the SDP as an equivalent SDP in which A in the objective is replaced by X.

(b) What does the result of part (a) imply about the convexity properties of f(A)?

(c) Derive the Lagrange dual of the SDP in part (a). Use the dual problem to give an SDP
formulation of the problem

minimize f(Ag+x1 41+ + 2p4,)
with variable x € R, where Ay, ..., A, are given m x n matrices.

5.30 Consider the convex optimization problem

1 m
minimize ¢ @+ — Z log(1 + e“(“;m_bi)) (28)
i

with variable z € R"™, where p is a positive constant.

(a) Derive the Lagrange dual of the equivalent problem

1 m

minimize ¢z 4 — Z log(1 + exp(py;))
i=1
subject to Ax —b =<y

with variables x € R", y € R™, where A is the m X n-matrix with ith row aZT.

(b) Suppose the pair of primal and dual linear programs

minimize Lz maximize —bLz

subject to Ax <b subject to ATz +c¢=0
z>=0

has a finite optimal value p* and a dual optimal solution z* that satisfies z* < 1. Let ¢* be
the optimal value of (28). Show that
mlog 2

pr<qg <p+ :
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5.31 In this problem, r is an integer between 1 and n, and ||z|| denotes the norm

ol = _ max o+ o

on R™ (||z|| is the sum of the largest r absolute values of entries of x). For r = 1, this is the
Chebyshev norm ||z||s = max; |z;|; for r = n, it is the 1-norm ||z[jy = >, |zx|.

(a) Explain why ||z|| is the optimal value of the optimization problem

maximize :ETy
subject to  [|ylleo <1
[yl <7
The variable in this problem is an n-vector y.
(b) From part (a), —||z|| is the optimal value of the convex optimization problem

minimize  f(y)
subject to |ly|1 < r

where dom f = {y | [|[y|lc <1} and f(y) = —zTy for y € dom f.

Derive the dual of this problem (exactly as it is stated, i.e., treating the constraint ||y|leo <1
as an implicit constraint).

(c) Suppose A € R™*™ and b € R™. Use your result in part (b) to formulate the problem
minimize ||Az — b||3 + ||z
as a quadratic program.
5.32 Consider the following optimization problem with two variables 1 and xs:

minimize x7

subject to \/x% + 23 < x9
—I7 < 1.
(a) What is the optimal value?

(b) Derive the Lagrange dual of the problem (exactly as stated, without first reformulating or
simplifying the problem).

(¢) Find the dual optimal value. Does strong duality hold? If the result is surprising, explain
briefly why it does not contradict duality theory.

5.33 In this problem ¢ denotes the function
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0 u <0
d(u) = ¢ u?/2 0<u<l
u—1/2 u>1.

(This is one side of the Huber penalty function.)
Derive the Lagrange duals of the following two problems. In each problem, A is an m X n matrix
and b is an m-vector. The variables are x € R"™ and y € R™.

(2 N

minimize Y ¢(y;)
i=1

subject to Ax+b=y

(b)

minimize <J5(Hy||2)
subject to Az +b=y.

5.34 Some standard duals. Give (Lagrange) dual problems for the following convex optimization prob-

lems.

(a)

minimize %xTPx
subject to Ax =b

where P = 0 but may be indefinite.
(b)

1
minimize EHAJE — 0|3 4 Nzl

(c) For convex functions f; : R" — R,

minimize Z fi(z).

1=1

5.35 Showing concavity via duality. The geometric mean function
n 1/n
g(z) = <H lEz)
i=1
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and the geometric mean of the k smallest values of a vector z,

. 1/k
gk(l’):< II %‘})

i=n—k+1

(where we recall the notation that z; is the ith largest component of z € R", so that ;) > zj9 >
+++ > xpy)) are both concave on R | .

(a) Use Lagrange duality to show that

1 n
g(m) = ;jgf {vTx | Hvi =1l,ve R7fr+}.

i=1

(b) Use Lagrange duality to show that

1
gk(:n):Ei)ng{Zvi:E”Hvi:l, Sc{l,...,n}, card S =k, UGR1+}.
’ i€es

€S

(c) Explain (in one sentence) why parts (a) and (b) imply that g and gx are concave over their
domains R} ,.

5.36 Sensitivity analysis. Consider the convex optimization problem

minimize  fo(z)
subject to fi(x) <s, Ax=1,

with variables x € R", where s is some fixed real number. Let A\* be an optimal dual variable
(Lagrange multiplier) associated with the constraint fi(z) < s. Below we consider scenarios in
which we change the value of s, and then solve the modified problem. We are interested in the
optimal objective value of this modified problem, compared to the original one above.

For each of the following, choose the best response. (Please note that the words were carefully
chosen.)
(a) If \* is large, then decreasing s

e might decrease the optimal value

e will increase the optimal value a lot

e can leave the optimal value unchanged
(b) If A\* is large, then increasing s

e will decrease the optimal value a lot

e will increase the optimal value a lot

e can leave the optimal value unchanged

(¢) If \* =0, then increasing s
e can decrease the objective value
e can increase the objective value
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e will leave the optimal value unchanged

5.37 Consider a convex optimization problem

minimize  fo(x)
subject to  fi(x) <0, i=1,....,m
Az = b,

that satisfies Slater’s constraint qualification. Determine whether each of the statements below is
true or false.

The primal and dual problems have the same objective value.

(a)
(b) The primal problem has a unique solution.
(c)

)

(d) Suppose z* is optimal, with fi(z*) = —0.2. Then for every dual optimal point (A*,v*), we
have A7 = 0.

The dual problem is not unbounded.
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6.1

6.2

6 Approximation and fitting

Three measures of the spread of a group of numbers. For x € R", we define three functions that
measure the spread or width of the set of its elements (or coefficients). The first function is the
spread, defined as

Gspra(x) = max z; — min ;.
i=1,...,n i=1,...,n

This is the width of the smallest interval that contains all the elements of .
The second function is the standard deviation, defined as

1/2

1 & 1 & ?
qbstdev(:E) = E in - <E Z$z>
i=1 i=1

This is the statistical standard deviation of a random variable that takes the values x1, ..., x,, each
with probability 1/n.

The third function is the average absolute deviation from the median of the values:

¢aamd(x) = (1/n) Z |l‘2 - med($)|7

i=1

where med(z) denotes the median of the components of x, defined as follows. If n = 2k — 1 is
odd, then the median is defined as the value of middle entry when the components are sorted, i.e.,
med(x) = z[x), the kth largest element among the values z1,...,z,. If n = 2k is even, we define
the median as the average of the two middle values, i.e., med(z) = (2 + T{p41))/2-

Fach of these functions measures the spread of the values of the entries of x; for example, each
function is zero if and only if all components of x are equal, and each function is unaffected if a
constant is added to each component of x.

Which of these three functions is convex? For each one, either show that it is convex, or give a
counterexample showing it is not convex. By a counterexample, we mean a specific x and y such
that Jensen’s inequality fails, i.e., ¢((x + vy)/2) > (¢(z) + ¢(y))/2.

Minimaz rational fit to the exponential. (See exercise 6.9 of Convex Optimization.) We consider
the specific problem instance with data

ti=-3+6(Gi—1)/(k—1), y=c¢€% i=1,...k,

where k£ = 201. (In other words, the data are obtained by uniformly sampling the exponential
function over the interval [—3,3].) Find a function of the form

ag + a1t + a2t2

t) =
() 14 byt + bot?
that minimizes max;—1 _x|f(ti) — vi|. (We require that 1 4 bit; + bot? >0 fori=1,...,k.)

Find optimal values of ag, a1, a2, by, bs, and give the optimal objective value, computed to an
accuracy of 0.001. Plot the data and the optimal rational function fit on the same plot. On a
different plot, give the fitting error, i.e., f(¢;) — v;.
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6.3

Hint. To check if a feasibility problem is feasible, in Matlab, you can use strcmp (cvx_status, ’Solved’)
after cvx_end. In Python, use problem.status == ’optimal’. In Julia, use problem.status == :Optimal.

In Julia, make sure to use the ECOS solver.

Approzimation with trigonometric polynomials. Suppose y : R — R is a 2w-periodic function. We
will approximate y with the trigonometric polynomial

K K
ft)= Z a, cos(kt) + Z b sin(kt).
k=0 k=1

We consider two approximations: one that minimizes the Lo-norm of the error, defined as

1~ yllo = ( JRCEO, dt)m,

—T
and one that minimizes the Li-norm of the error, defined as

1f =yl = /W |£(t) —y(t)| dt.

—T

The Lo approximation is of course given by the (truncated) Fourier expansion of y.

To find an L; approximation, we discretize ¢t at 2N points,
t;=—-m+ir/N, i=1,...,2N,

and approximate the L1 norm as

2N
If =yl ~ (x/N) D If(t) = y(ta)l.
i=1

(A standard rule of thumb is to take IV at least 10 times larger than K.) The L, approximation (or
really, an approximation of the L; approximation) can now be found using linear programming.

We consider a specific case, where y is a 2m-periodic square-wave, defined for —7 <t < 7 as

o(t) :{ 1 |t <7/2

0 otherwise.

(The graph of y over a few cycles explains the name ‘square-wave’.)

Find the optimal L9 approximation and (discretized) L; optimal approximation for K = 10. You
can find the Ly optimal approximation analytically, or by solving a least-squares problem associated
with the discretized version of the problem. Since y is even, you can take the sine coefficients in
your approximations to be zero. Show y and the two approximations on a single plot.

In addition, plot a histogram of the residuals (i.e., the numbers f(t;) —y(t;)) for the two approxima-
tions. Use the same horizontal axis range, so the two residual distributions can easily be compared.
(Matlab command hist might be helpful here.) Make some brief comments about what you see.
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6.4 Penalty function approximation. We consider the approximation problem
minimize ¢(Azx —b)

where A € R™*" and b € R, the variable is z € R", and ¢ : R™ — R is a convex penalty
function that measures the quality of the approximation Az ~ b. We will consider the following
choices of penalty function:

(a) Euclidean norm.
m

= llyllz = Q_wi)"”.

k=1

(b) £1-norm.
=yl =>_ lyel-
k=1

(c) Sum of the largest m/2 absolute values.

[m/2]
Z Y]k
where |y|1), |yli2), [Yl3), - .-, denote the absolute values of the components of y sorted in
decreasing order.
(d) A piecewise-linear penalty.
S(y) = h(y),  h(u) =14 Ju—02 02<]|ul<03
p 20ul — 0.5 |u| > 0.3.

(e) Huber penalty.

m ’LL2 ul < M
Sy) =D hlyr),  h(u) = { M(2Ju| — M) IuI > M

with M = 0.2.
(f) Log-barrier penalty.

9 =S hy).  hlu) = —log(l —u?), domh={u|[u <1}.
k=1

Here is the problem. Generate data A and b as follows:

= 200;

= 100;

= randn(m,n);
randn(m,1);

b/ (1.01*max(abs(b)));

o o =B B
[
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6.5

(The normalization of b ensures that the domain of ¢(Ax — b) is nonempty if we use the log-barrier
penalty.) To compare the results, plot a histogram of the vector of residuals y = Az — b, for each
of the solutions x, using the Matlab command

hist (A*x-b,m/2) ;

Some additional hints and remarks for the individual problems:

) This problem can be solved using least-squares (x=A\b).
) Use the CVX function norm(y,1).
) Use the CVX function norm_largest ().
(d) Use CVX, with the overloaded max (), abs (), and sum() functions.
) Use the CVX function huber ().
)

The current version of CVX handles the logarithm using an iterative procedure, which is slow
and not entirely reliable. However, you can reformulate this problem as

maximize ([T, (1 — (Az — b)g)(1 + (Az — b))))/*™,
and use the CVX function geo_mean().

015 optimization. Optimization and approximation methods that use both an /¢y-norm (or its
square) and an ¢;-norm are currently very popular in statistics, machine learning, and signal and
image processing. Examples include Huber estimation, LASSO, basis pursuit, SVM, various /;-
regularized classification methods, total variation de-noising, etc. Very roughly, an fs-norm cor-
responds to Euclidean distance (squared), or the negative log-likelihood function for a Gaussian;
in contrast the £1-norm gives ‘robust’ approximation, i.e., reduced sensitivity to outliers, and also
tends to yield sparse solutions (of whatever the argument of the norm is). (All of this is just
background; you don’t need to know any of this to solve the problem.)

In this problem we study a natural method for blending the two norms, by using the ¢ 5-norm,

defined as
L 2/3
I2]l1.5 = <Z !2113/2>
i=1

for z € R*. We will consider the simplest approximation or regression problem:
minimize |Az —b||15,

with variable z € R", and problem data A € R™*" and b € R". We will assume that m > n and
the A is full rank (i.e., rank n). The hope is that this ¢; 5-optimal approximation problem should
share some of the good features of {5 and ¢ approximation.

(a) Give optimality conditions for this problem. Try to make these as simple as possible.

(b) Explain how to formulate the ¢ 5-norm approximation problem as an SDP. (Your SDP can
include linear equality and inequality constraints.)

(c) Solve the specific numerical instance generated by the following code:
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randn(’state’,0);
A=randn (100, 30) ;
b=randn(100,1);

Numerically verify the optimality conditions. Give a histogram of the residuals, and repeat
for the f5-norm and ¢1-norm approximations. You can use any method you like to solve the
problem (but of course you must explain how you did it); in particular, you do not need to
use the SDP formulation found in part (b).

6.6 Total variation image interpolation. A grayscale image is represented as an m x n matrix of
intensities U°"8. You are given the values Ufjng, for (i,7) € K, where K C {1,...,m} x {1,...,n}.
Your job is to interpolate the image, by guessing the missing values. The reconstructed image
will be represented by U € R"™*", where U satisfies the interpolation conditions U;; = Ufjng for
(1,7) € K.

The reconstruction is found by minimizing a roughness measure subject to the interpolation con-
ditions. One common roughness measure is the {5 variation (squared),

ZZ(UU - i—l,j)z + Z Z(Uij - Ui,j—1)2.

i=2 j=1 i=1 j=2

Another method minimizes instead the total variation,

DX UG = Uieagl + YD |Uij = Uijal.

i=2 j=1 i=1 j=2

Evidently both methods lead to convex optimization problems.

Carry out /2 and total variation interpolation on the problem instance with data given in tv_img_interp.m.
This will define m, n, and matrices Uorig and Known. The matrix Known is m x n, with (i, j) entry

one if (i,j) € K, and zero otherwise. The mfile also has skeleton plotting code. (We give you

the entire original image so you can compare your reconstruction to the original; obviously your
solution cannot access Ufjng for (i,7) € K.)

6.7 Piecewise-linear fitting. In many applications some function in the model is not given by a formula,
but instead as tabulated data. The tabulated data could come from empirical measurements,
historical data, numerically evaluating some complex expression or solving some problem, for a set
of values of the argument. For use in a convex optimization model, we then have to fit these data
with a convex function that is compatible with the solver or other system that we use. In this
problem we explore a very simple problem of this general type.

Suppose we are given the data (z;,y;), i = 1,...,m, with z;, y; € R. We will assume that x; are
sorted, d.e., 11 < T9g < -+ < Xpy,. Let ag < a1 < ag < --- < ag be a set of fixed knot points, with
agp < x1 and ax > x,,. Explain how to find the convex piecewise linear function f, defined over
[ag, ar], with knot points a;, that minimizes the least-squares fitting criterion

m

Z(f(a:,-) - yi)2’

i=1
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6.8

You must explain what the variables are and how they parametrize f, and how you ensure convexity
of f.

Hints. One method to solve this problem is based on the Lagrange basis, fo,..., fx, which are the
piecewise linear functions that satisfy

fila;) =65, 4,j=0,... K.

Another method is based on defining f(z) = a;x + f;, for x € (a;—1,a;]. You then have to add
conditions on the parameters o; and B; to ensure that f is continuous and convex.

Apply your method to the data in the file pwl_fit_data.m, which contains data with z; € [0, 1].
Find the best affine fit (which corresponds to a = (0,1)), and the best piecewise-linear convex
function fit for 1, 2, and 3 internal knot points, evenly spaced in [0, 1]. (For example, for 3 internal
knot points we have ag = 0, a3 = 0.25, ag = 0.50, ag = 0.75, agy = 1.) Give the least-squares
fitting cost for each one. Plot the data and the piecewise-linear fits found. Express each function
in the form

f(x)

= i:maxK(a,-x + 6i).

sey

(In this form the function is easily incorporated into an optimization problem.)

Least-squares fitting with convex splines. A cubic spline (or fourth-order spline) with breakpoints
ag, a1, ..., ayr (that satisfy ag < ag < -+ < aypy) is a piecewise-polynomial function with the
following properties:

e the function is a cubic polynomial on each interval [ay, vjt1]

e the function values, and the first and second derivatives are continuous on the interval (ay, apr).

The figure shows an example of a cubic spline f(¢) with M = 10 segments and breakpoints g = 0,
] = 1, ey, 10 = 10.

10

-10
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In approximation problems with splines it is convenient to parametrize a spline as a linear combi-
nation of basis functions, called B-splines. The precise definition of B-splines is not important for
our purposes; it is sufficient to know that every cubic spline can be written as a linear combination
of M + 3 cubic B-splines gi(t), i.e., in the form

ft) =z101(t) + - + Targsgmas(t) =zl g(t),

and that there exist efficient algorithms for computing g(t) = (g1(¢), ..., gm+3(t)). The next figure
shows the 13 B-splines for the breakpoints 0, 1, ..., 10.

1

0.8

0.61 |

gk (t)

0.2

0 2 4 6 8 10

In this exercise we study the problem of fitting a cubic spline to a set of data points, subject to the
constraint that the spline is a convex function. Specifically, the breakpoints «g, ..., ays are fixed,

and we are given N data points (tx, yr) with tx € [ag, apr]. We are asked to find the convex cubic
spline f(t) that minimizes the least-squares criterion

N

> () —yr)*

k=1

We will use B-splines to parametrize f, so the variables in the problem are the coefficients = in
f(t) = 2Tg(t). The problem can then be written as

N

minimize zLg(ty) — 2
;( g(te) — yr) (29)

subject to 7 g(t) is convex in t on [ag, ap].

(a) Express problem (29) as a convex optimization problem of the form

minimize || Az — b|3
subject to Gx = h.
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(b) Use CVX to solve a specific instance of the optimization problem in part (a). As in the figures
above, we take M =10 and ag =0, a3 =1, ..., azg = 10.
Download the Matlab files spline_data.mand bsplines.m. The first m-file is used to generate
the problem data. The command [t, y] = spline_data will generate two vectors t, y of
length N = 51, with the data points g, yx.
The second function can be used to compute the B-splines, and their first and second deriva-
tives, at any given point u € [0,10]. The command [g, gp, gpp] = bsplines(u) returns
three vectors of length 13 with elements g(u), g;.(u), and g (u). (The right derivatives are
returned for u = 0, and the left derivatives for u = 10.)
Solve the convex spline fitting problem (29) for this example, and plot the optimal spline.

6.9 Robust least-squares with interval coefficient matriz. An interval matriz in R™*™ is a matrix whose
entries are intervals:

A:{AERmxn ’ ‘Aij_Aij‘ SRZ']', 1=1,....,m, j = 1,...,n}.
The matrix A € R™ " is called the nominal value or center value, and R € R™*"™ which is

elementwise nonnegative, is called the radius.

The robust least-squares problem, with interval matrix, is
minimize supyc 4 ||[Az — b2,

with optimization variable z € R™. The problem data are A (i.e., A and R) and b € R™. The
objective, as a function of x, is called the worst-case residual norm. The robust least-squares
problem is evidently a convex optimization problem.

(a) Formulate the interval matrix robust least-squares problem as a standard optimization prob-
lem, e.g., a QP, SOCP, or SDP. You can introduce new variables if needed. Your reformulation
should have a number of variables and constraints that grows linearly with m and n, and not
exponentially.

(b) Consider the specific problem instance with m =4, n = 3,

60+0.05 45£0.05 —8+£0.05 —6

A— 90+£0.05 30£0.06 —30=£0.05 b -3
0+0.06 —8+£0.05 —440.05 |’ 18
30+£0.05 10£0.06 —10+£0.05 -9

(The first part of each entry in A gives A;;; the second gives R;;, which are all 0.05 here.) Find
the solution zjs of the nominal problem (i.e., minimize || Az — b||2), and robust least-squares
solution xs. For each of these, find the nominal residual norm, and also the worst-case residual
norm. Make sure the results make sense.

6.10 Identifying a sparse linear dynamical system. A linear dynamical system has the form
z(t+1) = Az(t) + Bu(t) +w(t), t=1,...,T—1,

where z(t) € R" is the state, u(t) € R™ is the input signal, and w(¢) € R" is the process noise,
at time ¢t. We assume the process noises are IID N (0, W), where W > 0 is the covariance matrix.
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The matrix A € R"*" is called the dynamics matrix or the state transition matrix, and the matrix
B € R™™ is called the input matrix.

You are given accurate measurements of the state and input signal, i.e., z(1),...,z(T), u(1), ..., u(T—
1), and W is known. Your job is to find a state transition matrix A and mput matrix B from these
data, that are plausible, and in addition are sparse, i.e., have many zero entries. (The sparser the
better.)

By doing this, you are effectively estimating the structure of the dynamical system, i.e., you are
determining which components of x(t) and u(t) affect which components of z(t + 1). In some
applications, this structure might be more interesting than the actual values of the (nonzero)
coefficients in A and B.

By plausible, we mean that

Tz_l W12 (a(t + 1) = Aa(t) — Bu() | < n(@ = 1) +2¢/20(T —1).

t=1

(You can just take this as our definition of plausible. But to explain this choice, we note that when
A=Aand B= B, the left-hand side is x2, with n(T — 1) degrees of freedom, and so has mean
n(T —1) and standard deviation /2n(7T" — 1). Thus, the constraint above states that the LHS does
not exceed the mean by more than 2 standard deviations.)

(a) Describe a method for finding A and B, based on convex optimization.

We are looking for a wery simple method, that involves solving one convex optimization
problem. (There are many extensions of this basic method, that would improve the simple
method, i.e., yield sparser A and B that are still plausible. We’re not asking you to describe
or implement any of these.)

(b) Carry out your method on the data found in sparse_lds_data.m. Give the values of A and
B that you find, and verify that they are plausible.

In the data file, we give you the true values of A and B, so you can evaluate the performance
of your method. (Needless to say, you are not allowed to use these values when forming A and
B. ) Using these true values, give the number of false positives and false negatives in both A
and B. A false positive in A, for example, is an entry that is nonzero, while the corresponding
entry in A is zero. A false negative is an entry of A that is zero, while the corresponding
entry of A is nonzero. To judge whether an entry of A (or B) is nonzero, you can use the test
|A;j| > 0.01 (or |B;;| > 0.01).

6.11 Measurement with bounded errors. A series of K measurements y1,...,yx € RP, are taken in order
to estimate an unknown vector x € R?. The measurements are related to the unknown vector x by
y; = Az + v;, where v; is a measurement noise that satisfies ||v;||oc < @ but is otherwise unknown.

(In other words, the entries of vy, ..., vx are no larger than a..) The matrix A and the measurement
noise norm bound « are known. Let X denote the set of vectors x that are consistent with the
observations y1, ..., Yk, €., the set of x that could have resulted in the measurements made. Is X
convex?

Now we will examine what happens when the measurements are occasionally in error, i.e., for a few
i we have no relation between x and y;. More precisely suppose that It is a subset of {1,..., K},
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and that y; = Az + v; with ||v;||co < a (as above) for i € I, but for ¢ € Ig,yy, there is no relation
between x and y;. The set Igy; is the set of times of the faulty measurements.

Suppose you know that Ir,,¢ has at most J elements, i.e., out of K measurements, at most J are
faulty. You do not know If,y1¢; you know only a bound on its cardinality (size). For what values of
J is X, the set of x consistent with the measurements, convex?

Least-squares with some permuted measurements. We want to estimate a vector x € R", given
some linear measurements of x corrupted with Gaussian noise. Here’s the catch: some of the
measurements have been permuted.

More precisely, our measurement vector y € R™ has the form
y = P(Ax +v),

where v; are IID N(0,1) measurement noises, x € R" is the vector of parameters we wish to
estimate, and P € R"™*™ is a permutation matrix. (This means that each row and column of P
has exactly one entry equal to one, and the remaining m — 1 entries zero.) We assume that m > n
and that at most k of the measurements are permuted; i.e., Pe; # e; for no more than k indices .
We are interested in the case when k < m (e.g. k = 0.4m); that is, only some of the measurements
have been permuted. We want to estimate = and P.

Once we make a guess P for P, we can get the maximum likelihood estimate of by minimizing
|Az — PTy||2. The residual Az — Py is then our guess of what v is, and should be consistent with
being a sample of a N'(0, ) vector.

In principle, we can find the maximum likelihood estimate of x and P by solving a set of (7};) (k!—1)
least-squares problems, and choosing one that has minimum residual. But this is not practical unless
m and k are both very small.

Describe a heuristic method for approximately solving this problem, using convex optimization.
(There are many different approaches which work quite well.)

You might find the following fact useful. The solution to
minimize ||Az — PTy||

over P € R™*™ a permutation matrix, is the permutation that matches the smallest entry in y
with the smallest entry in Az, does the same for the second smallest entries and so forth.

Carry out your method on the data in 1s_perm_meas_data.*. Give your estimate of the permuted
indices. The data file includes the true permutation matrix and value of x (which of course you
cannot use in forming your estimate). Compare the estimate of z you get after your guessed
permutation with the estimate obtained assuming P = I.

Remark. This problem comes up in several applications. In target tracking, we get multiple noisy
measurements of a set of targets, and then guess which targets are the same in the different sets of
measurements. If some of our guesses are wrong (i.e., our target association is wrong) we have the
present problem. In vision systems the problem arises when we have multiple camera views of a
scene, which give us noisy measurements of a set of features. A feature correspondence algorithm
guesses which features in one view correspond to features in other views. If we make some feature
correspondence errors, we have the present problem.
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6.14

Fitting with censored data. In some experiments there are two kinds of measurements or data
available: The usual ones, in which you get a number (say), and censored data, in which you don’t
get the specific number, but are told something about it, such as a lower bound. A classic example
is a study of lifetimes of a set of subjects (say, laboratory mice). For those who have died by the end
of data collection, we get the lifetime. For those who have not died by the end of data collection,
we do not have the lifetime, but we do have a lower bound, i.e., the length of the study. These are
the censored data values.

We wish to fit a set of data points,
@,y M), @0,y 5y,

with z(®) € R™ and y®¥) € R, with a linear model of the form y ~ ¢’ . The vector ¢ € R" is the
model parameter, which we want to choose. We will use a least-squares criterion, i.e., choose ¢ to

minimize «
=Y <y<k> _ CT:C(k))z ‘
k=1

Here is the tricky part: some of the values of y*) are censored; for these entries, we have only a
(given) lower bound. We will re-order the data so that y(»,...,4M) are given (i.e., uncensored),
while y(M D ,y(K ) are all censored, i.e., unknown, but larger than D, a given number. All the
values of z(®) are known.

(a) Explain how to find ¢ (the model parameter) and y™*1 .. 4(K) (the censored data values)
that minimize J.

(b) Carry out the method of part (a) on the data values in cens_fit_data.*. Report ¢, the value
of ¢ found using this method.
Also find ¢, the least-squares estimate of ¢ obtained by simply ignoring the censored data
samples, i.e., the least-squares estimate based on the data

@,y M), (23D, D),

The data file contains cirye, the true value of ¢, in the vector c_true. Use this to give the two

relative errors

Hctrue - é”2 Hctrue - élsH2
)

”Ctrue”2 ”Ctrue”2

Spectrum analysis with quantized measurements. A sample is made up of n compounds, in quantities
qgi > 0, for i = 1,...,n. Each compound has a (nonnegative) spectrum, which we represent as a
vector s e R, for i =1,...,n. (Precisely what s() means won’t matter to us.) The spectrum
of the sample is given by s = 1", ¢;s®). We can write this more compactly as s = Sg¢, where
S e R™ " is a matrix whose columns are s, ... s,

Measurement of the spectrum of the sample gives us an interval for each spectrum value, i.e.,
l,u € R for which
liSSiSui, z:l,,m

(We don’t directly get s.) This occurs, for example, if our measurements are quantized.

76



6.15
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Given [ and u (and S), we cannot in general deduce ¢ exactly. Instead, we ask you to do the

following. For each compound %, find the range of possible values for ¢; consistent with the spectrum
]. Your job is to find ¢™™

7

min max

measurements. We will denote these ranges as ¢; € [¢]"™", ¢} max

and ¢}

nax,
Note that if g™ is large, we can confidently conclude that there is a significant amount of compound
i in the sample. If ¢;"** is small, we can confidently conclude that there is not much of compound
1 in the sample.

min

(a) Explain how to find ¢

7

and ¢"®*

maxgiven S, [, and wu.

(b) Carry out the method of part (a) for the problem instance given in spectrum_data.m. (Ex-
ecuting this file defines the problem data, and plots the compound spectra and measurement
bounds.) Plot the minimum and maximum values versus 7, using the commented out code in
the data file. Report your values for ¢j"™ and ¢;"**.

Learning a quadratic pseudo-metric from distance measurements. We are given a set of N pairs of

points in R™, z1,...,zn, and y1, ..., yn, together with a set of distances dy,...,dy > 0.

The goal is to find (or estimate or learn) a quadratic pseudo-metric d,

dw,y) = ((z —y) P —y)"?,

with P € 8", which approximates the given distances, i.e., d(z;,y;) = d;. (The pseudo-metric d is
a metric only when P > 0; when P > 0 is singular, it is a pseudo-metric.)

To do this, we will choose P € S that minimizes the mean squared error objective
1
N > (di — d(i, yi)*
i=1

(a) Explain how to find P using convex or quasiconvex optimization. If you cannot find an exact
formulation (i.e., one that is guaranteed to minimize the total squared error objective), give
a formulation that approximately minimizes the given objective, subject to the constraints.

(b) Carry out the method of part (a) with the data given in quad_metric_data.m. The columns
of the matrices X and Y are the points x; and y;; the row vector d gives the distances d;. Give
the optimal mean squared distance error.

We also provide a test set, with data X_test, Y_test, and d_test. Report the mean squared
distance error on the test set (using the metric found using the data set above).

Polynomial approzimation of inverse using eigenvalue information. We seek a polynomial of degree
k, p(a) = cg + c1a + ca® + - - - + ¢pa®, for which

p(A):COI+61A+02A2...+CkAk

is an approximate inverse of the nonsingular matrix A, for all A € A C R™". When & = p(A)b
is used as an approximate solution of the linear equation Ax = b, the associated residual norm is
|A(p(A)b) — bl|. We will judge our polynomial (i.e., the coefficients cy,...,c) by the worst case
residual over A € A and b in the unit ball:

R™ = sup [|A(p(A)b) = b]2.
AA, [[pl2<1
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6.17

The set of matrices we take is A = {A € S" | 0(A) C Q}, where 0(A) is the set of eigenvalues of A
(i.e., its spectrum), and @ C R is a union of a set of intervals (that do not contain 0).

(a) Explain how to find coefficients cj, ..., ¢} that minimize R"°. Your solution can involve ex-
pressions that involve the supremum of a polynomial (with scalar argument) over an interval.

(b) Carry out your method for ¥ = 4 and Q = [-0.6,—0.3] U [0.7,1.8]. You can replace the
supremum of a polynomial over 2 by a maximum over uniformly spaced (within each interval)
points in €, with spacing 0.01. Give the optimal value RV“* and the optimal coefficients

= (ch,...,cL).

Remarks. (Not needed to solve the problem.)

e The approximate inverse p(A)b would be computed by recursively, requiring the multiplication
of A with a vector k times.

e This approximate inverse could be used as a preconditioner for an iterative method.
e The Cayley-Hamilton theorem tells us that the inverse of any (invertible) matrix is a polyno-

mial of degree n — 1 of the matrix. Our hope here, however, is to get a single polynomial, of
relatively low degree, that serves as an approximate inverse for many different matrices.

Fitting a generalized additive regression model. A generalized additive model has the form
n
f@)=a+> fiz)),
j=1

for z € R", where o € R is the offset, and f; : R — R, with f;(0) = 0. The functions f; are called
the regressor functions. When each f; is linear, i.e., has the form wjx;, the generalized additive
model is the same as the standard (linear) regression model. Roughly speaking, a generalized
additive model takes into account nonlinearities in each regressor x;, but not nonlinear interactions
among the regressors. To visualize a generalized additive model, it is common to plot each regressor
function (when n is not too large).

We will restrict the functions f; to be piecewise-affine, with given knot points p; < --- < pg. This
means that f; is affine on the intervals (—oo, p1], [p1,p2], - .., [PK—1,PK], [PK,0), and continuous at
p1,...,pr. Let C denote the total (absolute value of) change in slope across all regressor functions
and all knot points. The value C is a measure of nonlinearity of the regressor functions; when
C = 0, the generalized additive model reduces to a linear regression model.

Now suppose we observe samples or data (z(M), M), . (V) 4(N)) ¢ R® x R, and wish to fit
a generalized additive model to the data. We choose the offset and the regressor functions to
minimize
1ML .
DA ICA el
i=1

where A > 0 is a regularization parameter. (The first term is the mean-square error.)

(a) Explain how to solve this problem using convex optimization.
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(b) Carry out the method of part (a) using the data in the file gen_add_reg_data.m. This file

contains the data, given as an N x n matrix X (whose rows are (z(")T), a column vector y
(which give y(i)), a vector p that gives the knot points, and the scalar lambda.
Give the mean-square error achieved by your generalized additive regression model. Compare
the estimated and true regressor functions in a 3 x 3 array of plots (using the plotting code in
the data file as a template), over the range —10 < x; < 10. The true regressor functions (to
be used only for plotting, of course) are given in the cell array f.

Hints.

e You can represent each regressor function f; as a linear combination of the basis functions
bo(u) = w and b;(u) = (u —pg)+ — (—p)+ for k =1,2,..., K, where (a)+ = max{a,0}.
e You might find the matrix XX = [by(X) b1(X) -+ bx(X)] useful.

Multi-label support vector machine. The basic SVM described in the book is used for classification
of data with two labels. In this problem we explore an extension of SVM that can be used to carry
out classification of data with more than two labels. Our data consists of pairs (z;,y;) € R" X
{1,...,K},i=1,...,m, where z; is the feature vector and y; is the label of the ith data point. (So
the labels can take the values 1,..., K.) Our classifier will use K affine functions, fi(z) = a£$+bk,
k=1,...,K, which we also collect into affine function from R"™ into R¥ as f(z) = Az 4+ b. (The
rows of A are a;f.) Given feature vector x, we guess the label § = argmax;, fr(z). We assume that
exact ties never occur, or if they do, an arbitrary choice can be made. Note that if a multiple of 1
is added to b, the classifier does not change. Thus, without loss of generality, we can assume that
17b =0.

To correctly classify the data examples, we need fy,(z;) > maxyz,, fr(z;) for all ¢. This is a set of
homogeneous strict inequalities in a, and by, which are feasible if and only if the set of nonstrict
inequalities fy, (z;) > 1 + maxyz,, fr(z;) are feasible. This motivates the loss function

£ = Y- (1 mae ulos) - fyi<xi>)+,

i=1 v
where (u)4+ = max{u,0}. The multi-label SVM chooses A and b to minimize
L(A,b) + ullAll%,

subject to 17b = 0, where u > 0 is a regularization parameter. (Several variations on this are
possible, such as regularizing b as well, or replacing the Frobenius norm squared with the sum of
norms of the columns of A.)

(a) Show how to find A and b using convex optimization. Be sure to justify any changes of
variables or reformulation (if needed), and convexity of the objective and constraints in your
formulation.

(b) Carry out multi-label SVM on the data given in multi_label_svm_data.m. Use the data
given in X and y to fit the SVM model, for a range of values of u. This data set includes an
additional set of data, Xtest and ytest, that you can use to test the SVM models. Plot the
test set classification error rate (i.e., the fraction of data examples in the test set for which

U # y) versus [i.
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You don’t need to try more than 10 or 20 values of y, and we suggest choosing them uniformly
on a log scale, from (say) 1072 to 102

Colorization with total variation regularization. A m xn color image is represented as three matrices
of intensities R,G,B € R™*", with entries in [0, 1], representing the red, green, and blue pixel
intensities, respectively. A color image is converted to a monochrome image, represented as one
matrix M € R™*", using

M =0.299R + 0.587G + 0.114B.

(These weights come from different perceived brightness of the three primary colors.)

In colorization, we are given M, the monochrome version of an image, and the color values of some
of the pixels; we are to guess its color version, i.e., the matrices R, G, B. Of course that’s a very
underdetermined problem. A very simple technique is to minimize the total variation of (R, G, B),
defined as

Rij — R; j+1
Gij — Gij+
m—1n—1 B B
_ ij — i+l
tV(R7G7B)_ R—R 1 9
i=1 j=1 Wty
Gij — Git1j
| Bij = Biv1,5 1y

subject to consistency with the given monochrome image, the known ranges of the entries of
(R,G,B) (i-e., in [0,1]), and the given color entries. Note that the sum above is of the norm
of 6-vectors, and not the norm-squared. (The 6-vector is an approximation of the spatial gradient
of (R,G,B).)

Carry out this method on the data given in image_colorization_data.*. The file loads flower.png
and provides the monochrome version of the image, M, along with vectors of known color intensities,
R_known, G_known, and B_known, and known_ind, the indices of the pixels with known values. If R
denotes the red channel of an image, then R(known_ind) returns the known red color intensities in
Matlab, and R[known_ind] returns the same in Python and Julia. The file also creates an image,
flower_given.png, that is monochrome, with the known pixels colored.

The tv function, invoked as tv(R,G,B), gives the total variation. CVXPY has the tv function
built-in, but CVX and CVX.jl do not, so we have provided the files tv.m and tv.j1 which contain
implementations for you to use.

In Python and Julia we have also provided the function save_img(filename,R,G,B) which writes
the image defined by the matrices R, G, B, to the file filename. To view an image in Matlab use
the imshow function.

The problem instance is a small image, 75 x 75, so the solve time is reasonable, say, under ten
seconds or so in CVX or CVXPY, and around 60 seconds in Julia.

Report your optimal objective value and, if you have access to a color printer, attach your recon-
structed image. If you don’t have access to a color printer, it’s OK to just give the optimal objective
value.

Recovering latent periodic signals. First, a definition: a signal x € R" is p-periodic with p < n if
Tiyp =x; fori=1,...,n—p.
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In this problem, we consider a noisy, measured signal y € R"™ which is (approximately) the sum
of a several periodic signals, with unknown periods. Given only the noisy signal y, our task is to
recover these latent periodic signals. In particular, y is given as

y:v+z$(”),

peEP

where v € R" is a (small) random noise term, and 2 is a p-periodic signal. The set P C
{1,...,Pmax} contains the periods of the latent periodic signals that compose .

If P were known, we could approximately recover the latent periodic signals z(®) using, say, least
squares. Because P is not known, we instead propose to recover the latent periodic signals zP by
solving the following optimization problem:

minimize Y7 (yi — )2 + 2 pett wy 2@ |2
subject to ¢ = ng{" (@)
#(P) is p-periodic, for p =1, ..., Pmax-

The variables are § and ), for p = 1,...,pmax. The first sum in the objective penalizes the
squared deviation of the measured signal y from our estimate ¢, and the second sum is a heuristic
for producing vectors Z(®) that contain only zeros. The weight vector w > 0 is increasing in its
indices, which encodes our desire that the latent periodic signals have small period.

(a) Explain how to solve the given optimization problem using convex optimization, and how to
use it to (approximately) recover the set P and the latent periodic signals @) for p e P.

(b) The file periodic_signals_data.* contains a signal y, as well as a weight vector w. Return
your best guess of the set P. plot the measured signal y, as well as the different periodic
components that (approximately) compose it. (Use separate graphs for each signal, so you
should have |P|+ 1 graphs.)

Rank one nonnegative matriz approximation. We are given some entries of an m X n matrix A with
positive entries, and wish to approximate it as the outer product of vectors x and y with positive
entries, i.e., zy’. We will use the average relative deviation between the entries of A and 2y’ as

our approximation criterion,
1 m n
—E E R(Aij, ziy5),
mn 4
i=1 j=1

where R is the relative deviation of two positive numbers, defined as
R(u,v) = max{u/v,v/u} — 1.
If we scale = by the positive number «, and y by 1/a, the outer product (ax)(y/a)? is the same

as zy”, so we will normalize z as 17z = 1.

The data in the problem consists of some of the values of A. Specifically, we are given A;; for
(i,j) € QC {1,...,m} x {1,...,n}. Thus, your goal is to find x € R, (which satisfies 17z = 1),
y € R, and A;; > 0 for (4,5) € €2, to minimize the average relative deviation between the entries
of A and xy”.
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(a) Explain how to solve this problem using convex or quasiconvex optimization.

(b) Solve the problem for the data given in rank_one_nmf_data.*. This includes a matrix A, and
a set of indexes Omega for the given entries. (The other entries of A are filled in with zeros.)
Report the optimal average relative deviation between A and zy”. Give your values for z,
y1, and A1 = 21y,

6.22 Total variation de-mosaicing. A color image is represented by 3 m x n matrices R, GG, and B that
give the red, green, and blue pixel intensities. A camera sensor, however, measures only one of the
color intensities at each pixel. The pattern of pixel sensor colors varies, but most of the patterns
have twice as many green sensor pixels as red or blue. A common arrangement repeats the 2 x 2

block
R G

G B

(assuming m and n are even).

De-mosaicing is the process of guessing, or interpolating, the missing color values at each pixel. The
sensors give us mn entries in the matrices R, G, and B; in de-mosaicing, we guess the remaining
2mn entries in the matrices.

First we describe a very basic method of de-mosaicing. For each 2 x 2 block of pixels we have the
4 intensity values
R;; Gijt1
Git1j Bit1j+1

We use the value R; ; as the red value for the other three pixels, and we do the same for the blue
value B;y1 j41. For guessing the green values at 7,7 and ¢ + 1, j + 1, we simply use the average of
the two measured green values, (G j+1 + Git1,5)/2.

A more sophisticated method relies on convex optimization. You choose the unknown pixel values
in R, G, and B to minimize the total variation of the color image, defined as

Ri; — Rij+1
Gij — Gijn
B;j — Bij+1
Riy1 — Rij
Giy1,; — Gij
Bit1;— Bij |

i
—_
3
|

—_

.
Il
—
<.
Il
,_.

2

Note that the norms in the sum here are not squared. The argument of the norms is a vector in
RS, an estimate of the spatial gradient of the RGB values.

We have provided you with several files in the data directory. Three images are given (in png for-

mat): demosaic_raw.png, which contains the raw or mosaic image to de-mosaic, demosaic_original.png,
which contains the original image from which the raw image was constructed, and demosaic_simple.png,
which is the image de-mosaiced by the simple method described above. Remember that the raw
image, and any reconstructed de-mosaiced image, have only one third the information of the origi-

nal, so we cannot expect them to look as good as the original. You don’t need the original or basic
de-mosaiced image files to solve the problem; they are given only so you can look at them to see

what they are. You should zoom in while viewing the raw image and the basic de-mosaic version,
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so you can see the pattern of 2 x 2 blocks in the first, and the simple de-mosaic method in the
second.

The tv function, invoked as tv(R,G,B), gives the total variation. CVXPY has the tv function
built-in, but CVX and CVX.jl do not, so we have provided the files tv.m and tv. j1 which contain
implementations for you to use.

The file demosaic_data.* constructs arrays R_mask, G_mask, and B_mask, which contain the in-
dices of pixels whose values we know in the original image, the number of rows and columns in
the image, m,n respectively, and arrays R_raw, B_raw, G_raw, which contain the known values
of each color at each pixel, filled in with zeroes for the unknown values. So if R is an m x n
matrix variable, the constraint R[R_mask]==R_raw[R_mask] in Julia and Python will impose the
constraint that it agrees with the given red pixel values; in Matlab, the constraint can be ex-
pressed as R(R_mask)==R_raw(R_mask). This file also contains a save_image method, which takes
three arguments, R, G, B arrays (that you’ve reconstructed) and saves the file under the name
output_image.png. To see the image in Matlab, use the imshow function.

Report the optimal value of total variation, and attach the de-mosaiced image. (If you don’t have
access to a color printer, you can submit a monochrome version. Print it large enough that we can
see it, say, at least half the page width wide.)

Hint. Your solution code should take less than 10 seconds or so to run in Python and Matlab, but
up to a minute or so in Julia. You might get a warning about an inaccurate solution, but you can

ignore it.

6.23 Fitting with a nonnegative combination of vectors from ellipsoids. You are given ellipsoids &1, ...,&, C
R”, and the vector b € R¥. Explain how to use convex optimization to choose a; € &,i=1,...,n,
and nonnegative x1,...,z, € R, that minimize

n
E Ty — b
=1

2

You can use any parametrization of the ellipsoids you like, for example,
& ={alllPa+ql2 <1},

or
& = {hiu+gi| |ulla <1},

or

E={al(a— )P a—¢) < 1},

i
with P; € Sf“H and ¢; € RF.

Remark. This is the opposite situation from robust approximation. In robust approximation, the
a;’s would be chosen to maximize the objective, once you choose z. Here, however, the a;’s are
chosen to minimize the objective, along with x.

6.24 Phase retrieval. In the phase retrieval problem, which has applications in X-ray crystallography,
electron microscopy, and coherent diffractive imaging, one observes only the magnitude of complex
measurements of a signal 2" € C", b; = |a}z'™°|, where a* denotes the conjugate transpose of
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a € C"; given m such measurements, one seeks z satisfying the nonlinear equalities b; = |a}z| for
i=1,...,m. We consider a simplified variant of this in R.

For vectors a; € R", assume we have m noisy observations
T, true\2 .
by = (a; ") +w;, i=1,...,m,

where w; is an unknown noise term, but which follows a known distribution. Let ¢ : R — R be a
closed convex function with conjugate ¢*. We would like to solve the problem

m
minimize Zgb(wl)
i=1

subject to b; = (el )2 +w;, i=1,...,m
3 < r?

(30)

in variables z € R™ and w € R™, where we assume we know the signal x has ¢o-norm bounded
by r, which seeks the x satisfying the contraints while simultaneously minimizing some measure
>, d(w;) of the amount of noise. This is obviously a non-convex problem—the equality con-
straints are quadratic—but we can often effectively approximate its solutions by lifting it into a
higher-dimensional space. We do so by taking the dual of the dual of the problem.

(a) By introducing variables v; € R for the equality constraints and A > 0 for the constraint
|lz||3 < 72, show that a dual to problem (30) is the semidefinite program

m
maximize —Zgb*(l/i) + 0T — A2
i=1
m
subject to Al — Zmaia? >0,
i=1
A>0
in variables ¥ € R™ and \.

(b) Introducing the dual variable X € S’} for the semidefinite constraint, show that a dual to the
problem (31) is

minimize Zqﬁ(bi —al'Xay)
i=1

subject to X =0, tr X <r?

where X € S™ is the variable.

(c) Suppose that X* is optimal for the problem in part (b) and X* has rank 1, i.e., X* = a*(2*)7

for some vector z* € R". What does that tell you about problem (30)?

(d) Let ¢(t) = |t| be the absolute value. Generate data according to the following process, which
we write in Julia notation:

m = 40;
n = 6;
A = randn(m, n);

xtrue = randn(n);
b = (A * xtrue) .*x (A * xtrue);
b[1:10] .= 1000;
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(This means that we generate a matrix A € R™*" with i.i.d. N'(0,1) entries, set 2™ € R" to
be a random vector with i.i.d. A/(0,1) entries, set b = (Az'"¢)? elementwise, and then corrupt
the first 10 entries of b to satisfy b; = 1000.) Using CVX*, solve the SDP in part (b) for 25
different random realizations of the problem data.

The numerical rank of a symmetric matrix X € S™ at tolerance ¢ > 0 is the number of
eigenvalues \; of X with |\;| > e. Plot a histogram of the numerical ranks at tolerance
€ = 1072 of your solutions.

(e) Given a positive semidefinite matrix X with spectral decomposition X = Y1 Nl , the
best rank-1 approximation to X is )\wlvip. Thus, given a solution X* =" | )\iviv;f to part
(b), we approximate 2" by & = \/Ajv1. For your code in part (d), how frequently do you
(effectively) recover z'T"¢? Note that we may not correctly recover the sign of x, so we measure

the error by min{||Z — z""||o, [|Z + ™|}

Implementing the asymmetric Huber function in CVX*. We define the asymmetric Huber function
¢:R— R as
M_(—2u—M_) u<-M_
d(u) = < u? -M_<u< M,
My(2u— M)  u> My,

where M_ > 0 and M, > 0 are parameters, the negative and positive thresholds, respectively.
This function is the same as the standard Huber function with threshold M > 0,

2 <M
h(u) =" Jul <
MQ2lul = M) |u > M,

when M_ = M, = M.

The standard Huber function is implemented in CVX* as an atom. The asymmetric Huber function
is not.

Explain how to implement the asymmetric Huber function in CVX* using standard operations
and functions, including the standard Huber function, satisfying the DCP (disciplined convex
programming) rules. You may use any atom in CVX* except the atoms huber_circ, huber pos,
and berhu. Your solution should be very short and should include an explanation of how the two
thresholds M_ and M, come in to your implementation. Verify your implementation by plotting
it over the range [—3,3] with M_ =1 and M, = 2.

Hints. Some of the following might be helpful: Pre-composing the standard Huber function with
an affine function of u; adding an affine function of u; scaling.

Remark. The standard Huber function is used as a penalty function in regression when the data
includes outliers, with M interpreted roughly as the threshold in residuals between a valid sample
and an outlier sample. The asymmetric Huber function can be used when the outliers might have
different negative and positive thresholds.

Deconvolution of a known filter. In a (simplified) imaging system, instead of observing a true image,
one observes an image with slight blurring (or other aberrations due to sensor error), and wishes
to recover the true image. We let Z € R%*¢ by the true image, which is unobsered, and ¥ € R*¢
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be the observed image. Here, Y = F x Z is the convolution of Z with a known filter F' (this is the
point spread function), with entries

d
Yio = (F*Z)(k,1) = > F;;Zp—iy—;.
ij=1

For those indices (k —i,1 — j) out of the range {1,...,d}?, we define Z,_;;_; = 0. Let m = d? be
the number of measurements we take. If we let z = vec(Z), that is, the vectorized version of Z,
and y = vec(Y'), then there is a matrix A € R"™*™ such that

y=Az.
(You do not need to know what the matrix A is or precisely what vec does.) Sensor failures at

some pixels (k,l) mean that instead of observing Yy, = (F * Z)(k,l) we observe a Yy = 0.

A vectorized image z € R™ is represented in an overcomplete basis B € R™*™, n > m, so there
exist vectors z € R" such that z = Bz. Given Y with y = vec(Y), the image deconvolution
problem is to find 2 minimizing an objective f(x) while reconstructing the observed image, i.e.
satisfying y = ABx.

Formulate the following as convex optimization problems:

(a) The deconvolution problem with objective f(z) = ||z|1.

(b) The deconvolution problem with objective f(x) = ||z||2.

(c) The deconvolution problem with objective f(z) = ||z co-
Solve your optimization problems from parts (a), (b), and (c) on the data in deconvolution_data. *.

In the file we have defined a vector y € R™ and filter matrix A € R™*™, with zeroed-out entries
indicating sensor failures, as well as a basis matrix B € {—1,0, 1}"*"™.

(d) For each of (a)—(c), display the estimated true image z = Bz* that is reconstructed from z*.
In addition, display the initial sensed image y. Explain your results in one or two sentences.

Note. You can view an image Z € R¥? from a vector z € R™ with m = d? by reshaping and
displaying. A few commands to view z € R as an image follow.

e In Julia, assuming you are using PyPlot, use
imshow(reshape(z, (d, d)), cmap = "gray", interpolation="nearest")
If you are using Plots and Images, you can use
display(Gray. (reshape(z, (d, d))))
e In Matlab use
imshow(reshape(z, d, d))
e In Python assuming you are using Matplotlib.pyplot as plt, use

plt.imshow(np.reshape(z, (d,d)).T, "gray", interpolation="nearest")
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6.27 Let x* be optimal for the least-p-norm problem

minimize ||z,
subject to Ax = b,

with variable z € R", where A € R™*", with m < n. (And of course, p € [1,00].) Determine if
the statements below are reasonable or unreasonable.

(a) For p =2, we would expect to see many components of z* equal to zero.
(b) For p =1, we would expect to see many components of z* equal to zero.

(c) For p = 0o, we would expect many components of z* to take on the values +||2*| .
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7.1

7.2

7.3

7 Statistical estimation

Mazximum likelihood estimation of x and moise mean and covariance. Consider the maximum
likelihood estimation problem with the linear measurement model

T .
yi=a;x+v, 1=1,...,m.
The vector x € R"™ is a vector of unknown parameters, y; are the measurement values, and v; are

independent and identically distributed measurement errors.

In this problem we make the assumption that the normalized probability density function of the
errors is given (normalized to have zero mean and unit variance), but not their mean and variance.
In other words, the density of the measurement errors v; is

pe) = S0,

where f is a given, normalized density. The parameters pu and o are the mean and standard
deviation of the distribution p, and are not known.

The maximum likelihood estimates of z, u, o are the maximizers of the log-likelihood function

m m T
ol —
> logp(y — af x) = —mlogo + > log f(I—==E),
, ; o
i=1 =1
where y is the observed value. Show that if f is log-concave, then the maximum likelihood estimates
of x, pu, o can be determined by solving a convex optimization problem.

Mean and covariance estimation with conditional independence constraints. Let X € R"™ be a
Gaussian random variable with density

1
P(¥) = G (der 5)172

exp(—(z — a)T S (z — a)/2).

The conditional density of a subvector (X;, X;) € R? of X, given the remaining variables, is also
Gaussian, and its covariance matrix R;; is equal to the Schur complement of the 2 x 2 submatrix

[ Sii - Sij }

Sij S

in the covariance matrix §. The variables X;, X; are called conditionally independent if the
covariance matrix R;; of their conditional distribution is diagonal.

Formulate the following problem as a convex optimization problem. We are given N independent
samples y1, ..., yv € R™ of X. We are also given a list N' € {1,...,n} x {1,...,n} of pairs of
conditionally independent variables: (i,7) € N means X; and X; are conditionally independent.
The problem is to compute the maximum likelihood estimate of the mean a and the covariance
matrix S, subject to the constraint that X; and X, are conditionally independent for (i, ) € N.

Mazximum likelihood estimation for exponential family. A probability distribution or density on a
set D, parametrized by 8 € R", is called an exponential family if it has the form

po(z) = a(9) exp (67 ¢(x)),
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for x € D, where ¢ : D — R", and a(f) is a normalizing function. Here we intepret pg(x) as a
density function when D is a continuous set, and a probability distribution when D is discrete.

Thus we have -
a(0) = < /D exp(67 () dm)

~1
a(f) = (Z exp(HTC(w)))

zeD

when py is a density, and

when py represents a distribution. We consider only values of 6 for which the integral or sum above
is finite. Many families of distributions have this form, for appropriate choice of the parameter
and function c.

(a) When ¢(z) =  and D = R/}, what is the associated family of densities? What is the set of
valid values of 67

(b) Consider the case with D = {0, 1}, with ¢(0) = 0, ¢(1) = 1. What is the associated exponential
family of distributions? What are the valid values of the parameter § € R?

(¢) Explain how to represent the normal family N (u,Y) as an exponential family. Hint. Use pa-
rameter (z,Y) = (X7 'u, ©71). With this parameter, §7 c(x) has the form 27 ¢c; (z)+tr Y Co(z),
where Cy(z) € S™.

(d) Log-likelihood function. Show that for any xz € D, the log-likelihood function log py(z) is
concave in #. This means that maximum-likelihood estimation for an exponential family leads
to a convex optimization problem. You don’t have to give a formal proof of concavity of
log pp(z) in the general case: You can just consider the case when D is finite, and state that
the other cases (discrete but infinite D, continuous D) can be handled by taking limits of finite
sums.

(e) Optimality condition for ML estimation. Let £g(x1,...,2x) be the log-likelihood function for
K IID samples, x1, ..., x, from the distribution or density pg. Assuming log py is differentiable
in 0, show that

1
(1/K)Voly(z1,...,0K) = — c(azi)—%)c(x).
(The subscript under E means the expectation under the distribution or density py.)

Interpretation. The ML estimate of # is characterized by the empirical mean of ¢(x) being
equal to the expected value of ¢(x), under the density or distribution py. (We assume here
that the maximizer of ¢ is characterized by the gradient vanishing.)

7.4 Maximum likelihood prediction of team ability. A set of n teams compete in a tournament. We
model each team’s ability by a number a; € [0,1], j = 1,...,n. When teams j and k play each
other, the probability that team j wins is equal to prob(a; — ax + v > 0), where v ~ N(0, 0?).

You are given the outcome of m past games. These are organized as
(j(l)uk(l)ay(l))u Z‘:17”’77717

meaning that game ¢ was played between teams ) and k®; y( = 1 means that team j won,
while ¥y = —1 means that team k() won. (We assume there are no ties.)
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(a) Formulate the problem of finding the maximum likelihood estimate of team abilities, a € R",

given the outcomes, as a convex optimization problem. You will find the game incidence
matriz A € R"™*", defined as

y@ | = j(i')
Ag =< —y®@ [ =f®
0 otherwise,

useful.

The prior constraints a; € [0,1] should be included in the problem formulation. Also, we
note that if a constant is added to all team abilities, there is no change in the probabilities of
game outcomes. This means that a is determined only up to a constant, like a potential. But
this doesn’t affect the ML estimation problem, or any subsequent predictions made using the
estimated parameters.

(b) Find a for the team data given in team_data.m, in the matrix train. (This matrix gives the
outcomes for a tournament in which each team plays each other team once.) You may find
the CVX function log_normcdf helpful for this problem.

You can form A using the commands

A = sparse(l:m,train(:,1),train(:,3),m,n) + ...
sparse(l:m,train(:,2),-train(:,3),m,n);

(c¢) Use the maximum likelihood estimate a found in part (b) to predict the outcomes of next
year’s tournament games, given in the matrix test, using §( = sign(a;u — aym ). Compare
these predictions with the actual outcomes, given in the third column of test. Give the
fraction of correctly predicted outcomes.

The games played in train and test are the same, so another, simpler method for predicting
the outcomes in test it to just assume the team that won last year’s match will also win this
year’s match. Give the percentage of correctly predicted outcomes using this simple method.

7.5 Estimating a vector with unknown measurement nonlinearity. (A specific instance of exercise 7.9
in Convex Optimization.) We want to estimate a vector z € R", given some measurements

yi = dlalz +v), i=1,...,m.

Here a; € R"™ are known, v; are IID N(0,0%) random noises, and ¢ : R — R is an unknown
monotonic increasing function, known to satisfy

a < ¢'(u) < B,

for all u. (Here o and 3 are known positive constants, with @ < 5.) We want to find a maximum
likelihood estimate of x and ¢, given y;. (We also know a;, o, o, and f3.)

This sounds like an infinite-dimensional problem, since one of the parameters we are estimating is a
function. In fact, we only need to know the m numbers z; = ¢! (y;), i = 1,...,m. So by estimating
¢ we really mean estimating the m numbers z1,...,2,,. (These numbers are not arbitrary; they
must be consistent with the prior information o < ¢'(u) < f8 for all .)
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(a) Explain how to find a maximum likelihood estimate of x and ¢ (i.e., z1,. .., 2, ) using convex
optimization.

(b) Carry out your method on the data given in nonlin_meas_data.*, which includes a matrix
A € R™*™, with rows a?, ...,ak . Give 1, the maximum likelihood estimate of 2. Plot your
estimated function ¢p,. (You can do this by plotting (Z,,1); versus y;, with y; on the vertical

axis and (Z£); on the horizontal axis.)

Hint. You can assume the measurements are numbered so that y; are sorted in nondecreasing order,
i, y1 < y2 < -+ < yp. (The data given in the problem instance for part (b) is given in this
order.)

Mazimum likelihood estimation of an increasing nonnegative signal. We wish to estimate a scalar
signal z(t), for t = 1,2,..., N, which is known to be nonnegative and monotonically nondecreasing;:

0<z(l) <z(2) <---<z(N).

This occurs in many practical problems. For example, x(¢) might be a measure of wear or dete-
rioration, that can only get worse, or stay the same, as time ¢ increases. We are also given that
x(t) =0 for ¢ <0.

We are given a noise-corrupted moving average of x, given by

k
y(t) => h(ma(t—7)+ov(t), t=2,...,N+1,

T=1

where v(t) are independent A/ (0,1) random variables.

(a) Show how to formulate the problem of finding the maximum likelihood estimate of z, given
y, taking into account the prior assumption that z is nonnegative and monotonically nonde-
creasing, as a convex optimization problem. Be sure to indicate what the problem variables
are, and what the problem data are.

(b) We now consider a specific instance of the problem, with problem data (i.e., N, k, h, and y)
given in the file m1_estim_incr_signal_data.*. (This file contains the true signal xtrue,
which of course you cannot use in creating your estimate.) Find the maximum likelihood
estimate Z ), and plot it, along with the true signal. Also find and plot the maximum likelihood
estimate T free 10t taking into account the signal nonnegativity and monotonicity.

Hints.

e Matlab: The function conv (convolution) is overloaded to work with CVX.

e Python: Numpy has a function convolve which performs convolution. CVXPY has conv
which does the same thing for variables.

e Julia: The function conv is overloaded to work with Convex.jl.

7.7 Relaxed and discrete A-optimal experiment design. This problem concerns the A-optimal experi-

ment design problem, described on page 387, with data generated as follows.

91



7.8

7.9

7.10

n = 5; % dimension of parameters to be estimated

p = 20; % number of available types of measurements

m 30; % total number of measurements to be carried out
randn(’state’, 0);

V=randn(n,p); % columns are vi, the possible measurement vectors

Solve the relaxed A-optimal experiment design problem,

minimize  (1/m)tr (37_; \jvol )~
subject to 17\ = 1, A>=0,

with variable A € R?. Find the optimal point \* and the associated optimal value of the relaxed
problem. This optimal value is a lower bound on the optimal value of the discrete A-optimal
experiment design problem,

minimize  tr (37, miv;v] ) !
subject to mj+---+mp=m, m; €{0,...,m}, i=1,...,p,

with variables mq,...,m,. To get a suboptimal point for this discrete problem, round the entries
in mA* to obtain integers m;. If needed, adjust these by hand or some other method to ensure that
they sum to m, and compute the objective value obtained. This is, of course, an upper bound on
the optimal value of the discrete problem. Give the gap between this upper bound and the lower
bound obtained from the relaxed problem. Note that the two objective values can be interpreted
as mean-square estimation error E || — z]|3.

Optimal detector design. We adopt here the notation of §7.3 of the book. Explain how to design a
(possibly randomized) detector that minimizes the worst-case probability of our estimate being off
by more than one,

Py = meaxprob(|é — 6] >2).

(The probability above is under the distribution associated with 6.)

Carry out your method for the problem instance with data in off_by_one_det_data.m. Give the
optimal detection probability matrix D. Compare the optimal worst-case probability Pj. with the
worst-case probability P2 obtained using a maximum-likelihood detector.

Ezperiment design with condition number objective. Explain how to solve the experiment design
problem (§7.5) with the condition number cond(E) of E (the error covariance matrix) as the
objective to be minimized.

Worst-case probability of loss. Two investments are made, with random returns R, and Ro. The
total return for the two investments is R; + Rg, and the probability of a loss (including breaking
even, i.c., Ry + Ry = 0) is p'®° = prob(R; + Ry < 0). The goal is to find the worst-case (i.e.,
maximum possible) value of p'°, consistent with the following information. Both R; and Ry have
Gaussian marginal distributions, with known means p1 and ps and known standard deviations o
and o9. In addition, it is known that R; and Ry are correlated with correlation coefficient p, i.e.,

E(R; — 1)(Rg — p2) = poioa.
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Your job is to find the worst-case p'°® over any joint distribution of Ry and Ry consistent with the

given marginals and correlation coefficient.

We will consider the specific case with data

Mm1 = 8, o = 20, g1 = 6, g9 = 17.5, p = —0.25.

We can compare the results to the case when Ry and Rp are jointly Gaussian. In this case we have

Ry + Ry ~ N(i1 + pia, 03 + 03 + 2pa102),

loss — 0.050. Your job is to see how much larger p'°* can

which for the data given above gives p
possibly be.

This is an infinite-dimensional optimization problem, since you must maximize p'°® over an infinite-

dimensional set of joint distributions. To (approximately) solve it, we discretize the values that R;
and Ry can take on, to n = 100 values r1,...,7,, uniformly spaced from r; = —30 to r, = +70.
We use the discretized marginals p(!) and p® for R; and Rs, given by

exp (—(r; — )%/ (20%))
Soioyexp (=(rj — pr)?/(207))

pi") = prob(Ry = r;) =

fork=1,2,i=1,...,n.

Formulate the (discretized) problem as a convex optimization problem, and solve it. Report the
maximum value of p'°® you find. Plot the joint distribution that yields the maximum value of p'°
using the Matlab commands mesh and contour.

Remark. You might be surprised at both the maximum value of p'°

that achieves it.

, and the joint distribution

Minimax linear fitting. Consider a linear measurement model y = Ax + v, where x € R" is a
vector of parameters to be estimated, y € R" is a vector of measurements, v € R™ is a set of
measurement errors, and A € R"*" with rank n, with m > n. We know y and A, but we don’t
know wv; our goal is to estimate . We make only one assumption about the measurement error v:
[0l < e

We will estimate x using a linear estimator £ = By; we must choose the estimation matrix B €

R"™ ™. The estimation error is e = & — x. We will choose B to minimize the maximum possible
value of ||e||oo, where the maximum is over all values of x and all values of v satisfying ||v]|s < €.

(a) Show how to find B via convex optimization.
(b) Numerical example. Solve the problem instance given in minimax_fit_data.m. Display the

% you obtain and report [|Z — 2'7%¢||,,. Here "¢ is the value of x used to generate the
measurement y; it is given in the data file.

Cozx proportional hazards model. Let T be a continuous random variable taking on values in R.
We can think of T" as modeling an event that takes place at some unknown future time, such as
the death of a living person or a machine failure.

The survival function is S(t) = prob(T > t), which satisfies S(0) = 1, S'(¢) < 0, and lim;_,o0 S(t) =
0. The hazard rate is given by A(t) = —S'(t)/S(t) € R4, and has the following interpretation: For
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small § > 0, A(t)d is approximately the probability of the event occurring in [¢,¢ + J], given that it
has not occurred up to time ¢. The survival function can be expressed in terms of the hazard rate:

S(t) = exp (- /0 A0 d7> .

(The hazard rate must have infinite integral over [0, c0).)

The Coz proportional hazards model gives the hazard rate as a function of some features or ex-
planatory variables (assumed constant in time) = € R". In particular, A is given by

A(t) = o(t) exp(w” @),

where \g (which is nonnegative, with infinite integral) is called the baseline hazard rate, and w € R™
is a vector of model parameters. (The name derives from the fact that A(¢) is proportional to
exp(w;z;), for each i.)

Now suppose that we have observed a set of independent samples, with event times t/ and feature
values z7, for j = 1,..., N. In other words, we observe that the event with features 7/ occurred at
time t/. You can assume that the baseline hazard rate \g is known. Show that maximum likelihood
estimation of the parameter w is a convex optimization problem.

Remarks. Regularization is typically included in Cox proportional hazards fitting; for example,
adding ¢; regularization yields a sparse model, which selects the features to be used. The basic
Cox proportional hazards model described here is readily extended to include discrete times of the
event, censored measurements (which means that we only observe T' to be in an interval), and the
effects of features that can vary with time.

Mazimum likelihood estimation for an affinely transformed distribution. Let z be a random variable
on R" with density p,(u) = exp —¢(||ul|2), where ¢ : R — R is convex and increasing. Examples of
such distributions include the standard normal N(0,0%I), with ¢(u) = (u)% +«, and the multivari-
able Laplacian distribution, with ¢(u) = (u)4+ + 3, where o and § are normalizing constants, and
(a)+ = max{a,0}. Now let z be the random variable 2 = Az + b, where A € R™*" is nonsingular.
The distribution of z is parametrized by A and b.

Suppose x1,...,xy are independent samples from the distribution of z. Explain how to find a
maximum likelihood estimate of A and b using convex optimization. If you make any further
assumptions about A and b (beyond invertiblility of A), you must justify it.

Hint. The density of z = Az + b is given by

1

= g AT 0 b)),

pz(v)
A simple MAP problem. We seek to estimate a point € R2, with exponential prior density
p(z) = exp —(z1 + x2), based on the measurements
Y1 =T1+tv1, Y2=7=T2+V2, Y3=2T1— T2+ V3,

where v1,v9,v3 are IID N(0, 1) random variables (also independent of z). A naive estimate of z is
given by Znaive = (yly y2)'
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(a) Explain how to find the MAP estimate of x, given the observations y, y2, ys.

(b) Generate 100 random instances of x and y, from the given distributions. For each instance,
find the MAP estimate Z,,p, and the naive estimate Zpaive. Give a scatter plot of the MAP
estimation error, i.e., £map—2, and another scatter plot of the naive estimation error, Zpaive — .

7.15 Minimum possible mazximum correlation. Let Z be a random variable taking values in R", and let
¥ € S| be its covariance matrix. We do not know X, but we do know the variance of m linear
functions of Z. Specifically, we are given nonzero vectors ay,...,a,, € R" and o1,...,0, > 0 for
which

var(alZ) =02, i=1,...,m.

For ¢ # j the correlation of Z; and Z; is defined to be
p i

==

V/ i

Let p™* = max;; |p;j| be the maximum (absolute value) of the correlation among entries of Z. If
P is large, then at least two components of Z are highly correlated (or anticorrelated).

(a) Explain how to find the smallest value of p™® that is consistent with the given information,
using convex or quasiconvex optimization. If your formulation involves a change of variables
or other transformation, justify it.

(b) The file correlation_bounds_data.* contains oy,...,0,, and the matrix A with columns
G1y- .., 0. Find the minimum value of p™#* that is consistent with this data. Report your
minimum value of p™#*, and give a corresponding covariance matrix X that achieves this value.
You can report the minimum value of p™#* to an accuracy of 0.01.

7.16 Direct standardization. Consider a random variable (z,y) € R" xR, and N samples (z1,41), ..., (xn,yn) €
R" x R, which we will use to estimate the (marginal) distribution of y. If the given samples were
chosen according to the joint distribution of (z,y), a reasonable estimate for the distribution of y
would be the uniform empirical distribution, which takes on values y1,...,yx each with probabil-
ity 1/N. (If y is Boolean, i.e., y € {0,1}, we are using the fraction of samples with y = 1 as our
estimate of prob(y = 1).)

The bad news is that the samples (x1,y1),...,(zn,yn) € R™ X R were not chosen from the
distribution of (x,y), but instead from another (unknown, but presumably similar) distribution.
The good news is that we know E z, the expected value of x. We will use our knowledge of E x,
together with the samples, to estimate the distribution of y. Direct standardization replaces the
uniform empirical distribution with a weighted one, which takes on values y; with probability ;,
where m = 0, 177 = 1. The weights or sample probabilities 7 are found by maximizing the entropy
— Zf\il m; log m;, subject to the requirement that the weighted sample expected value of x matches
the known probabilities of x in the distribution, E z. This can be expressed as Zf\i 1 mir; = Ex.
(Both z; and Ez are known.)

(a) Explain why choosing 7 is a convex optimization problem.

(b) Consider the simple case with n = 1, and = € {0,1}, so Ex = prob(z = 1). Find the optimal
sample weights 7 (analytically). Explain your solution in the following case. The samples are
people, with = 0 meaning the person is male, and = = 1 meaning the person is female. The
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overall population is known to have equal numbers of females and males, but in the sample
population the male : female proportions are 0.7 : 0.3.

(c) The data in direct_std_data.* contain the samples () and y(), as well as Ex. Find the
weights 7*, and report the weighted empirical distribution. On the same plot, compare the
cumulative distributions of

e the uniform empirical distribution,

e the weighted empirical distribution using 7*, and

e the true distribution of y.
The true and empirical distributions are provided in the data file. (For example, the 20
elements of p_true give prob(y = 1) up to prob(y = 20), in order).
Note: Julia users might want to use the ECOS solver, by including using ECO0S, and solving
by using solve! (prob, ECOSSolver()).

Note: You don’t need to know this to solve the problem, but the data for part (c) are real. The
random variable x is a vector of a student’s gender, age, and mother’s and father’s educational
attainment, and y is the student’s score on a standardized test.

Mazximum likelihood estimation of a discrete log-concave distribution. Suppose random variable
X € {1,...,n} has unknown probability mass function p € R", where prob(X = k) = py,
k=1,...,n. Suppose we know that the probability mass function is log-concave, which means

prob(X = k) > \/prob(X =k —1)prob(X =k +1), k=2,...,n— 1.
Let 2, ..., 2(N) be N independent and identically distributed (IID) samples of X.

(a) Explain how to compute a maximum likelihood estimate of the log-concave probability mass
function p, given the N observations described above.

(b) Carry out your procedure on the data found in logccv_mle_data.*. Plot the empirical
probability mass function (which is the maximum likelihood estimate without the log-concave
assumption), your maximum likelihood estimate (with the log-concave assumption), and the
true probability mass function found in the data file. Comment briefly on the result.

Mazimum likelihood estimation of a log-concave distribution. We have a random variable X which
takes values in {1,...,n}. It has a distribution p € R", with prob(X = i) = p;. However, we
do not know p, and would like to determine it based on N independent samples of X. In those
N samples, let m; denote the number of samples for which X =i, so >, m; = N. The likelihood
function is then

p) = [ o™
i=1

We know that the distribution p is log-concave. Recall a discrete function f : Z — R is called
concave if f(i) > (1/2)(f(i — 1) + f(i + 1)). For functions f defined on {1,...,n} we require this
constraint to hold at ¢ = 2,...,n — 1. The function p is called log-concave if log p is concave. Given
mi,..., My, we would like to find the log-concave distribution p of maximum likelihood.

(a) Formulate this problem as a convex optimization problem.
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(b) We have n = 13 and observe
m=(1, 5 6, 15 18, 20, 22, 11, 22, 8 9, 4, 2).

Carry out your method from part (a) on this data. Plot m;/N (the empirical distribution)
and your estimate of p.

Rank one nonnegative matrixz approximation. We are given some entries of an m X n matrix A with
positive entries, and wish to approximate it as the outer product of vectors x and y with positive
entries, i.e., zy’. We will use the average relative deviation between the entries of A and 2y’ as

our approximation criterion,
1 m n
—E E R(Aij, ziy5),
mn “— 4
i=1 j=1

where R is the relative deviation of two positive numbers, defined as

R(u,v) = max{u/v,v/u} — 1.

If we scale = by the positive number «, and y by 1/a, the outer product (azx)(y/a)? is the same

as zy’, so we will normalize z as 17z = 1.

The data in the problem consists of some of the values of A. Specifically, we are given A;; for
(i,j) € QC{1,...,m} x {1,...,n}. Thus, your goal is to find z € R, (which satisfies 17z = 1),
y € R, and A;; > 0 for (4,5) € €2, to minimize the average relative deviation between the entries
of A and xy”.

(a) Explain how to solve this problem using convex or quasiconvex optimization.

(b) Solve the problem for the data given in rank_one_nmf_data.*. This includes a matrix A, and
a set of indexes Omega for the given entries. (The other entries of A are filled in with zeros.)
Report the optimal average relative deviation between A and zy’. Give your values for z1,
y1, and Ay = x191.

Transforming to a normal distribution. We are given n samples z; € R from an unknown distri-
bution. We seek an increasing piecewise-affine function ¢ : R — R for which y; = ¢(z;) has a
distribution close to N'(0,1). In other words, the nonlinear transformation = — y = p(z) (approx-
imately) transforms the given distribution to a standard normal distribution.

You can assume that the samples are distinct and sorted, i.e., 1 < 9 < --+ < x,, and therefore
we also have y; < y2 < -+ < y,. The empirical CDF (cumulative distribution function) of y; is the
piecewise-constant function F': R — R given by

0 z < Y1,
F(z)=9 k/n yp<z<yps1, k=1,...,n—1,
1 Z 2> Yn.

The Kolmogorov-Smirnov distance between the empirical distribution of y; and the standard normal
distribution is given by
D = sup|F(z) — ®(z)],
z
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where @ is the CDF of an N(0,1) random variable. We will use D as our measure of how close the
transformed distribution is to normal. Note that D can be as small as 1/(2n) (but no smaller), by
choosing y; = ®~1((i — 1/2)/n).
Note that D only depends on the n numbers y1,...,y,. From these numbers we extend ¢ to a
function on R using linear interpolation between these values, and extending outside the interval
[x1, ] using the same slopes as the first and last segments, respectively. So yi,...,y, determine
©.
Our regularization (measure of complexity) of ¢ is

n—1

R =
i=2

Yirl —Yi  Yi —Yi—1
Ti41 — Tg T — Tj—1

This is the sum of the absolute values of the change in slope of ¢. Note that R = 0 if and only if
© has no kinks, i.e., is affine.

We will choose y; (which defines ¢) by minimizing R, subject to D < D™#* where D™ > 1/(2n)
is a parameter. It can be shown that the condition y; < y;+1 will hold automatically; but if you are
nervous about this, you are welcome to add the constraint y; + € < y; 11, where € is a small positive
number.

(a) Explain how to solve this problem using convex or quasiconvex optimization. If your formu-
lation involves a change of variables or other transformation, justify it.

(b) The file transform_to_normal_data.* contains the vector x (in sorted order) and its length

n. Use the method of part (a) to find the optimal ¢ (i.e., y) for D™** = 0.05. Plot the empirical
CDF of the original data x and the normal CDF ® on one plot, the empirical CDF of the
transformed data y and the normal CDF & on another plot, and the optimal transformation
@ on a third plot. Report the optimal value of R.
Hints. In Python and Julia, you should use the (default) ECOS solver to avoid warnings about
inaccurate solutions. You can evaluate the normal CDF ® using normcdf .m/norminv.m (Mat-
lab), scipy.stats.norm.cdf/ppf (Python), or normcdf /norminvcdf in StatsFuns.jl (Julia).
To plot the empirical CDFs of z and ¥, you are welcome to use the basic plot functions, which
connect adjacent points with lines. But if you’d like to create step function style plots, you
can use ecdf .m (Matlab), matplotlib.pyplot.step (Python), or step in PyPlot.jl (Julia).

ARX model with sparse excitation. Consider a time series y = (y1,...,yr). The auto-regressive
with excitation (ARX) model has the form

Y1 = Bye + -+ Buyr—m1 + w1, t=M,... T -1,

where € RM are the coefficients, and xys41, ..., o7 is the excitation or input signal. Neither f8
nor € RT are known. (The excitation values z1, ..., 23 do not enter the model.)

(a) The classical assumption is that z; are IID A(0,0?) random variables. Explain how to find
the maximum likelihood estimate of 3 € RM given y.

(b) Now assume that the excitation signal z is sparse. Suggest a simple method, based on convex
optimization, for estimating 8. Remark. This is a common model of various phenomena. In
one example y is an acoustic signal of a voiced phoneme, and x is the glottal excitation. And
no, you do not need to know this.
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(c) Apply the methods of parts (a) and (b) to the signal given in arx_fit_data.*, with M = 10
and T = 200. The data file also contains the “true” coefficient A% from which the data is
generated. Compare the two estimates of 8 with the true value, by plotting all three.

Hint. You may use the fact that  can be expressed in terms of the convolution of b = (1, —f)

and y, defined as
min{s,M}

(b*y)zz Z bjyi—j—i-ly 121,,T+M
j=1
The function conv(b,y) is overloaded to work with CVX*. (Warning: b * y is not x; but x
can be written in terms of b * y.)

7.22 Blending overlapping covariance matrices. We consider the problem of constructing a covariance
matrix R € 8" from two (not necessarily consistent) estimates of submatrices S and 7. We order
the indices in the underlying random variable so that the first n; entries correspond to those
in the first submatrix but not the second, the next nsy entries correspond to the entries in both
submatrices, and the last n3 entries are those in the second submatrix but not the first. We have
n1 + ng + n3 = n, and we assume all three are positive. We partition the matrix R as

Ri1 Ri2 Ris
R = R{Q Ros  Rog
Rl; Ry Ry

We wish to choose R € S} so that

R R Si1 S
R(l):|: 11 12:|%S=|: 11 12:|
Rﬂ R22 5?2 522

and

R22 R23 T22 T23
R® = [ ~T = .
Ri; Rss TH T3
(Note the non-standard labeling of the block indices in T'.) You can assume that S € STJF"Q and
T € S are given.

Roughly speaking, your job is to guess the six submatrices R;; for ¢ < j. For four of these,
Ri1, Ri2, Ro3, and R33, you have only one piece of data to work with, i.e., S11, S12, T3, and 133,
respectively. For one of them, Rs9, you have two pieces of data to work with, 4.e., Soo and Tby. For
one submatrix, Ry3, you have no pieces of data to work with.

(a) A simple method. Based on the given data S and T', our guess of R is

Ry = S, Rz = Si2, Ry3 =0,
Rz = (1/2)(S22 + T22), Rz =Tas,  Raz = T3s.

For the four submatrices for which you have only one piece of data, we simply use that data
as our guess. For the one submatrix for which we have two pieces of data, we average the two
values. For the one submatrix for which we have no data, we guess the zero matrix.

Show by a specific numerical example that this simple method can yield an unacceptable value
of R. (No, we will not be more specific about what we mean by this; part of the problem
is to figure out what we mean. Also, we will deduct points from examples that are more
complicated than they need to be.)
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(b) Convex optimization to the rescue. Suppose we choose R by solving the convex optimization
problem
minimize  |RY — S||% + |R®) — T} + || Ris 3
subject to R > 0.

Here the variable is R € 8™, and ||U||r = (tr(UTU))Y/? is the Frobenius norm of a matrix.
Let R®™ be the estimate of R obtained using the simple method in part (a). Show that if
R$™ > 0, then it is the solution of this problem.

(c) Apply the method described in part (b) to the specific numerical example you provided in
part (a), and check (numerically) that the result R* is now acceptable.

7.23 Fitting a periodic Poisson distribution to data. We model the (random) number of times that some
type of event occurs in each hour of the day as independent Poisson variables, with

k
AL

E, ]{7:0,1,...,

prob(k events occur) = e~

with parameter Ay > 0, ¢t =1,...,24. (For \; =0, k = 0 events occur with probability one.) Here
t denotes the hour, with ¢t = 1 corresponding to the hour from midnight to 1AM, and ¢t = 24 the
hour between 11PM and midnight. (This is the periodic Poisson distribution in the title.) The
parameter \; is the expected value of the number of events that occur in hour ¢; it can be thought
of as the rate of occurence of the events in hour ¢.

Over one day we observe the numbers of events N1, ..., Noj.
(a) Mazimum likelihood estimate of parameters. What is the maximum likelihood estimate of the

parameters Aq,...,\o4?7 Hint. There is a simple analytical solution. You should consider the
cases Ny > 0 and N, = 0 separately.

(b) Regularized mazimum likelihood estimate of parameters. In many applications it is reasonable
to assume that \; varies smoothly over the day; for example, the rate of occurence of events for
3PM—4PM is not too different from the rate of occurence for APM-5PM. To obtain a smooth
estimate of A\; we maximize the log likelihood minus the regularization term

23
p (Z()\t—i—l —M)? A+ (M - )\24)2) ;

t=1

where p > 0. Explain how to find the values Aq,..., o4 using convex optimization. If you
change variables, explain.

o . . .

/ , .

(¢) What happens as p — oo? You can give a very short answer, with an informal argument
Hint. As in part (a), there is a simple analytical solution.

(d) Numerical example. Over one day, we observe
N =(0,4,2,2,3,0,4,5,6,6,4,1,4,4,0,1,3,4,2,0,3,2,0, 1).

Find the regularized maximum likelihood parameters for p € {0.1,1,10,100} using CVX*,
and plot Ay versus t for each value of p.
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(e)

Choosing the hyper-parameter value by out-of-sample test. One way to choose the value of p
is to see which of the models found in part (d) has the highest log likelihood on a test set,
i.e., another day’s data, that was not used to create the model. For each of the 4 values of
the parameters you estimated in part (d), evaluate the log likelihood of another day’s number
of events,

N*t'=1(0,1,3,2,3,1,4,5,3,1,4,3,5,5,2,1,1,1,2,0,1,2,1,0).

Which hyper-parameter value p would you choose?

7.24 Morphing between two discrete distributions. Consider two distributions for a random variable that
takes values in {1,2,...,n}, given by ¢, € R", with ¢ = 0, 17¢ = 1, and » = 0, 17r = 1. We
seek a sequence of distributions p(¥, i = 1,..., N, that ‘morph’ between ¢ and 7. This means that
pM = ¢, p®™) = and pltY) is close to p¥) fori =1,..., (N — 1), in some sense. Specifically we
will minimize

N-1
> d(p, ptth)
=1

where d is a distance function.

(a)
(b)

Euclidean morphing. What is the solution when the distance function is the sum of squares,
d*4(u,v) = ||u — v||3? The solution is simple; you can just give it without justification.

Hellinger morphing. Now we use the Hellinger distance function

n

A" (u,v) =Y (Vi — v/oi).
i=1
Explain how to solve the Hellinger morphing problem using convex optimization.

Kolmogorov morphing. Now we use the Kolmogorov distance function

i i
d*'(u,v) = max g uj — g v,
i=1,....,n |4 -
J=1 J=1

which is the /, distance between the respective cumulative distributions (using the order
of the outcomes). Explain how to solve the Kolmogorov morphing problem using convex
optimization.

Find the Euclidean, Hellinger, and Kolmogorov morphings for N = 10, n = 100. Use ¢ and r
provided in morphing_data.*. Plot each p(¥) versus n. Produce one figure for each choice of
distance function.

Note. In Python and Julia, you should use the ECOS solver.

7.25 Constrained mazimum likelihood estimation of mean and covariance. You are given some indepen-
dent samples z1,...,zy € R" from a Gaussian distribution N (u, X).

(a)

Explain how to find the maximum-likelihood estimate of p and X, subject to the constraint
that £ !y > 0, using convex optimization. You must fully justify any change of variables.

101



Finance interpretation. (Not needed to solve the problem.) Suppose x ~ N (u, X) is the return
of n assets. The portfolio vector h that maximizes the risk-adjusted return u” h—~yh? $h, where
v > 0 is the risk aversion parameter, is h = (1/27)X"!u. So the constraint in the problem
above is that the optimal portfolio has nonnegative entries, i.e., is a long-only portfolio. The
constrained maximum-likelihood estimate finds the maximum likelihood mean and covariance
of the return distribution, subject to the constraint that the associated optimal portfolio is
long-only.

Probability interpretation. (Not needed to solve the problem.) The constraint X!y = 0 is the
same as Vp(0) 